资源描述:
《angrist on quantile regression.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、NBERWORKINGPAPERSERIESQUANTILEREGRESSIONUNDERMISSPECIFICATION,WITHANAPPLICATIONTOTHEU.S.WAGESTRUCTUREJoshuaAngristVictorChernozhukovIvánFernández-ValWorkingPaper10428http://www.nber.org/papers/w10428NATIONALBUREAUOFECONOMICRESEARCH1050MassachusettsAvenueCambridge,MA02138Apr
2、il2004WethankDavidAutor,GaryChamberlain,GeorgeDeltas,JinyongHahn,JerryHausman,RogerKoenker,andArtLewbelforhelpfuldiscussions,andseminarparticipantsatBYU,theUniversityofMichigan,MichiganStateUniversity,theHarvard-MITEconometricsWorkshop,theUniversityofToronto,theUniversityof
3、IllinoisatUrbana-Champaign,andthe2004WinterEconometricSocietyMeetingsforcomments.Theviewsexpressedhereinarethoseoftheauthor(s)andnotnecessarilythoseoftheNationalBureauofEconomicResearch.©2004byJoshuaAngrist,VictorChernozhukov,andIvánFernández-Val.Allrightsreserved.Shortsect
4、ionsoftext,nottoexceedtwoparagraphs,maybequotedwithoutexplicitpermissionprovidedthatfullcredit,including©notice,isgiventothesource.QuantileRegressionunderMisspecification,withanApplicationtotheU.S.WageStructureJoshuaAngrist,VictorChernozhukov,andIvánFernández-ValNBERWorking
5、PaperNo.10428April2004JELNo.J31,C13,C14ABSTRACTQuantileregression(QR)fitsalinearmodelforconditionalquantiles,justasordinaryleastsquares(OLS)fitsalinearmodelforconditionalmeans.AnattractivefeatureofOLSisthatitgivestheminimummeansquareerrorlinearapproximationtotheconditionale
6、xpectationfunctionevenwhenthelinearmodelismisspecified.EmpiricalresearchusingquantileregressionwithdiscretecovariatessuggeststhatQRmayhaveasimilarproperty,buttheexactnatureofthelinearapproximationhasremainedelusive.Inthispaper,weshowthatQRcanbeinterpretedasminimizingaweight
7、edmean-squarederrorlossfunctionforspecificationerror.Theweightingfunctionisanaveragedensityofthedependentvariablenearthetrueconditionalquantile.TheweightedleastsquaresinterpretationofQRisusedtoderiveanomittedvariablesbiasformulaandapartialquantilecorrelationconcept,similart
8、otherelationshipbetweenpartialcorrelationandOLS.Wealsoderivegeneralasymptoticresul