[dataguru.cn]Understanding Deep Convolutional Networks

[dataguru.cn]Understanding Deep Convolutional Networks

ID:40702290

大小:1.46 MB

页数:17页

时间:2019-08-06

[dataguru.cn]Understanding Deep Convolutional Networks_第1页
[dataguru.cn]Understanding Deep Convolutional Networks_第2页
[dataguru.cn]Understanding Deep Convolutional Networks_第3页
[dataguru.cn]Understanding Deep Convolutional Networks_第4页
[dataguru.cn]Understanding Deep Convolutional Networks_第5页
资源描述:

《[dataguru.cn]Understanding Deep Convolutional Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、UnderstandingDeepConvolutionalNetworksStephaneMallatEcoleNormaleSuperieure,CNRS,PSL45rued'Ulm,75005Paris,FranceToappearinPhilosophicalTransactionsAin2016AbstractDeepconvolutionalnetworksprovidestateoftheartclassi cationsandregressionsresultsovermanyhigh-dimensional

2、problems.Wereviewtheirarchitecture,whichscattersdatawithacascadeoflinear lterweightsandnon-linearities.Amathematicalframeworkisintroducedtoanalyzetheirproperties.Computationsofinvariantsinvolvemultiscalecontractions,thelinearizationofhierarchicalsymmetries,andsparsese

3、parations.Applicationsarediscussed.x1IntroductionSupervisedlearningisahigh-dimensionalinterpolationproblem.Weapproximateafunctionf(x)fromqtrainingsamplesfxi;f(xi)g,wherexisadatavectorofveryhighdimensiond.Thisdimensionisofteniqlargerthan106,forimagesorotherlargesizesi

4、gnals.Deepconvolutionalneuralnetworkshaverecentlyobtainedremarkableexperimentalresults[21].Theygivestateoftheartperformancesforimageclassi cationwiththousandsofcomplexclasses[19],speechrecognition[17],bio-medicalapplications[22],naturallanguageunderstanding[30],andinm

5、anyotherdomains.Theyarealsostudiedasneuro-physiologicalmodelsofvision[4].Multilayerneuralnetworksarecomputationallearningarchitectureswhichpropagatetheinputdataacrossasequenceoflinearoperatorsandsimplenon-linearities.Thepropertiesofshallownetworks,withonehiddenlayer,a

6、rewellunderstoodasdecompositionsinfamiliesofridgefunctions[10].However,theseapproachesdonotextendtonetworkswithmorelayers.Deepconvolutionalneuralnetworks,introducedbyarXiv:1601.04920v1[stat.ML]19Jan2016LeCun[20],areimplementedwithlinearconvolutionsfollowedbynon-linear

7、ities,overtypicallymorethan5layers.Thesecomplexprogrammablemachines,de nedbypotentiallybillionsof lterweights,bringustoadi erentmathematicalworld.Manyresearchershavepointedoutthatdeepconvolutionnetworksarecomputingprogressivelymorepowerfulinvariantsasdepthincreases[4,

8、21],butrelationswithnetworksweightsandnon-linearitiesarecomplex.Thispaperaimsatclarifyingimportantprincipleswhichgovernthepr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。