Language Modeling with Gated Convolutional Networks

Language Modeling with Gated Convolutional Networks

ID:40719957

大小:572.11 KB

页数:8页

时间:2019-08-06

Language Modeling with Gated Convolutional Networks_第1页
Language Modeling with Gated Convolutional Networks_第2页
Language Modeling with Gated Convolutional Networks_第3页
Language Modeling with Gated Convolutional Networks_第4页
Language Modeling with Gated Convolutional Networks_第5页
资源描述:

《Language Modeling with Gated Convolutional Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LanguageModelingwithGatedConvolutionalNetworksYannN.DauphinAngelaFanMichaelAuliDavidGrangierFacebookAIResearchAbstractbeddingwordsincontinuousspaceoverwhichaneuralnet-workisapplied.ThecurrentstateofthearttolanguageThepre-dominantapproachtolanguagemodel-modeling

2、isbasedonlongshorttermmemorynetworksingtodateisbasedonrecurrentneuralnetworks.(LSTM;Hochreiteretal.,1997)whichcanmodelpoten-Inthispaperwepresentaconvolutionalapproachtiallyarbitrarilylongdependencies.tolanguagemodeling.Weintroduceanovelgatingmechanismthateasesg

3、radientpropaga-Inthispaper,weintroducegatedconvolutionalnetworkstionandwhichperformsbetterthantheLSTM-andapplythemtolanguagemodeling.Convolutionalnet-stylegatingofOordetal.(2016b)despitebeingworkscanbestackedtorepresentlargecontextsizesandsimpler.Weachieveanews

4、tateoftheartonextracthierarchicalfeaturesoverlargerandlargercontextsWikiText-103aswellasanewbestsingle-GPUwithmoreabstractivefeatures(LeCun&Bengio,1995).resultontheGoogleBillionWordbenchmark.InThisallowstomodellong-termdependenciesbyapplyingO(N)operationsoverac

5、ontextofsizeNandkernelwidthsettingswherelatencyisimportant,ourmodelkachievesanorderofmagnitudespeed-upcom-k.Incontrast,recurrentnetworksviewtheinputasachainparedtoarecurrentbaselinesincecomputationstructureandthereforerequirealinearnumberO(N)ofcanbeparallelized

6、overtime.Toourknowledge,operations.thisisthefirsttimeanon-recurrentapproachout-Analyzingtheinputhierarchicallybearsresemblancetoperformsstrongrecurrentmodelsonthesetasks.classicalgrammarformalismswhichbuildsyntactictreestructureofincreasinggranuality,e.g.,senten

7、cesconsistofnounphrasesandverbphraseseachcomprisingfurther1.Introductioninternalstructure(Manning&Schutze¨,1999;Steedman,2002).HierarchicalstructurealsoeaseslearningsincetheStatisticallanguagemodelsestimatetheprobabilitydistri-numberofnon-linearitiesforagivenco

8、ntextsizeisreducedbutionofasequenceofwords.Thisamountstomodelingcomparedtoachainstructure,therebymitigatingthevan-theprobabilityofthenextwordgiventheprecedingwords,ishinggra

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。