Deep_Learning_and_Unsupervised_Feature_Learning

Deep_Learning_and_Unsupervised_Feature_Learning

ID:39910988

大小:2.42 MB

页数:73页

时间:2019-07-14

Deep_Learning_and_Unsupervised_Feature_Learning_第1页
Deep_Learning_and_Unsupervised_Feature_Learning_第2页
Deep_Learning_and_Unsupervised_Feature_Learning_第3页
Deep_Learning_and_Unsupervised_Feature_Learning_第4页
Deep_Learning_and_Unsupervised_Feature_Learning_第5页
资源描述:

《Deep_Learning_and_Unsupervised_Feature_Learning》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、NIPS2010WorkshoponDeepLearningandUnsupervisedFeatureLearningTutorialonDeepLearningandApplicationsHonglakLeeUniversityofMichiganCo-organizers:YoshuaBengio,GeoffHinton,YannLeCun,AndrewNg,andMarc’AurelioRanzato*Includesslidematerialsourcedfromtheco-organizers1Outline•

2、Deeplearning–Greedylayer-wisetraining(forsupervisedlearning)–Deepbeliefnets–Stackeddenoisingauto-encoders–Stackedpredictivesparsecoding–DeepBoltzmannmachines•Applications–Vision–Audio–Language2Outline•Deeplearning–Greedylayer-wisetraining(forsupervisedlearning)–Dee

3、pbeliefnets–Stackeddenoisingauto-encoders–Stackedpredictivesparsecoding–DeepBoltzmannmachines•Applications–Vision–Audio–Language3Motivation:whygodeep?•DeepArchitecturescanberepresentationallyefficient–Fewercomputationalunitsforsamefunction•DeepRepresentationsmighta

4、llowforahierarchyorrepresentation–Allowsnon-localgeneralization–Comprehensibility•Multiplelevelsoflatentvariablesallowcombinatorialsharingofstatisticalstrength•Deeparchitecturesworkwell(vision,audio,NLP,etc.)!4DifferentLevelsofAbstraction•HierarchicalLearning–Natur

5、alprogressionfromlowleveltohighlevelstructureasseeninnaturalcomplexity–Easiertomonitorwhatisbeinglearntandtoguidethemachinetobettersubspaces–Agoodlowerlevelrepresentationcanbeusedformanydistincttasks5GeneralizableLearning•SharedLowLevel•PartialFeatureSharingReprese

6、ntations–MixedModeLearning–Multi-TaskLearning–CompositionofFunctions–UnsupervisedTrainingtask1taskNtask1task2task3outputy1outputyNoutputoutputoutput…High-levelfeatures…shared…intermediaterepresentationLow-levelfeatures…rawinput…6ANeuralNetwork•ForwardPropagation:–S

7、uminputs,produceactivation,feed-forward7ANeuralNetwork•Training:BackPropagationofError–Calculatetotalerroratthetop–Calculatecontributionstoerrorateachstepgoingbackwardst2t18DeepNeuralNetworks•Simpletoconstruct–Sigmoidnonlinearityforhiddenlayers–Softmaxfortheoutputl

8、ayer•But,backpropagationdoesnotworkwell(ifrandomlyinitialized)–Deepnetworkstrainedwithbackpropagation(withoutunsupervisedpretraining)performworse

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签