数学北师大版七年级下册探索三角形全等的条件—SSS

数学北师大版七年级下册探索三角形全等的条件—SSS

ID:39790145

大小:57.00 KB

页数:4页

时间:2019-07-11

数学北师大版七年级下册探索三角形全等的条件—SSS_第1页
数学北师大版七年级下册探索三角形全等的条件—SSS_第2页
数学北师大版七年级下册探索三角形全等的条件—SSS_第3页
数学北师大版七年级下册探索三角形全等的条件—SSS_第4页
资源描述:

《数学北师大版七年级下册探索三角形全等的条件—SSS》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、《SSS》教案一、教学目标(1)知识与技能:掌握三角形全等的“边边边”(“SSS”)判定方法,了解三角形的稳定性,会运用”SSS”判定方法证明两个三角形全等以及解决一些实际问题.(2)过程与方法:经历探索三角形全等的条件的过程,通过动手实践探究问题、发现问题,培养动手实践、探究、归纳的能力和发展推理、论证合作能力.(3)情感、态度与价值观:①使学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验.②通过实际生活中的有关三角形稳定性和全等的应用,让学生体验数学来源于生活,服务于生活的辩证思想,感受数学美.二

2、、教学重点与难点重点:掌握三角形全等的条件“SSS”,并能利用它判定两三角形是否全等.难点:探索思路的选择和探索三角形全等的“SSS”条件的过程.三、教学过程设计(一)创设情景,揭示课题1、已知:△ABC≌△DEF,你能找出其中相等的边与角吗?2、有一个三角形纸片,你能画一个三角形与它全等吗?如何画?与同伴交流你的画法?在学生回答的基础上,教师提出:利用了两个三角形全等的定义来作图,需要知道六个条件.但是,是否一定需要六个条件呢?条件能否尽可能少吗?一个条件行吗?两个条件、三个条件呢?(引出课题)(二)、讨论交流,实验探究1、探索三角形全等至少需要几个条件在学生前

3、面讨论的基础上,教师提出以下问题:(1)只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?(2)给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.①三角形的一个内角为30°,一条边为3cm.②三角形的两个内角分别为30°和50°.③三角形的两条边分别为4cm、6cm.对于问题(1),让学生在讨论的基础上,借助多媒体演示,让学生观察下列三角形:只给定一边:只给定一个角:然后引导学生通过比较,从而认识到:只给出一个条件时,不能保证所画出的三角形一定全等.对于问题(2)先让学生讨论有几种情况,体会分

4、类讨论的必要性,然后把学生分为三组,每组分别去解决(2)中的一个问题,再让各组学生展示学生所画的三角形或用木棒所摆的三角形,并交流解决的方法及获得的结论.小组一:解决问题①,三角形的一个内角为30°,一条边为3厘米.画出的三角形几乎都不一样.结论:这三个三角形不全等.小组二:解决问题②,三角形的两个内角分别是30°和50°,画的三角形形状一样,但大小不一样.结论:这两个三角形不能重合,即不全等.小组三:解决问题③,三角形的两边分别为4cm、6cm,所画出的三角形也不全等.我们通过画图、观察、比较知道,只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.那

5、么给出三个条件时,又怎样呢?接着提出以下问题:如果给出三个条件画三角形,你能说出有哪几种可能的情况?鼓励学生去讨论,引导学生将要解决的问题转化为在三角形3个角和3条边中,从中取3个条件,有几种情况.让学生体会分类讨论的方法.2、探索三角形全等的条件:边、边、边我们来思考下面两个问题:做一做:(1)已知一个三角形的三个内角分别为40°,60°,80°.你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?(2)已知一个三角形的三条边分别为4cm、5cm和7cm,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?对于问题(1)鼓

6、励学生去思考,只要学生能列举出反例即可,多媒体演示下图:你能发现什么结论?你是如何获得的?若改变三角形三边的取值,你能得到同样的结论吗?将学生每三人分为一组(其中一人为组长),由组长取三角形三边的长度,其他两人去画三角形,并将所画的三角形剪切,判断其能否重合,并总结所获得的结论.1、三个内角对应相等的两个三角形不一定全等.2、三边对应相等的两个三角形全等.简写为:“边边边”或“SSS”如图在△ABC和△DEF中∵∴△ABC≌△DEF.(SSS)方法:画图——剪切——比较——重合即全等.(三)应用知识、体验成功例:如图,AB=CD,BC=AD,问△ABC与△CDA全

7、等吗?是说明理由.ADADDCB解:△ABC≌△CDA,理由如下:在△ABC和△CDA∵∴△ABC≌△CDA(SSS).方法归纳:公共边的应用.拓展:问:AD与BC平行吗?为什么?(四)联系生活,探究性质问题:取三根长度适当的木条,用钉子钉成一个三角形的框架,你所得到的框架的形状固定吗?用四根木条钉成的框架的形状固定吗?用细纸条代替木条.用大头针固定,做实验并交流自己的收获.教师活动:鼓励学生展示所作的三角形、四边形,并交流所获得结论.板书:三角形具有稳定性,四边形不具有稳定性.在此基础上,向学生提出:(1)你能举出一些生活中应用三角形的稳定性的例子吗?(2)图(

8、2)的形状

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。