资源描述:
《Riemann流形上的A-调和形式》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Chapter1IntroductionChapter1IntroductionInthepresentpaper,wemainlydealwithA-harmonicformsonRiemannianman-ifolds.Asweallknow,manyinterestingresultsconcerninggeometricandanalyticpropertiesofharmonicformshasbeenfoundin[1-9].Amongtheseresults,theSobolev-Poincar´eimbeddinginequa
2、lityandPoincar´einequalityaretwocriticaloneswhichhaveengagedtheattentionofmanymathematicians.Ontheotherhand,theLaplace-Beltramioperator,Green’soperator,gradientoperatorandthehomotopyoperatorareeffectivetoolsindifferentfields,includingphysics,potentialtheory,nonlinearanalysisan
3、dthetheoryofelasticity.Inthispaper,weprovelocalAr(λ1,λ2,Ω)-weightedSobolev-Poincar´eimbeddinginequalitiesandAr(λ1,λ2,Ω)-weightedPoincar´einequalitiesforthecomposi-tionoftheLaplace-Beltramioperator,homotopyoperatorandGreen’soperatorappliedntoA-harmonicformsonmanifoldsinR,n≥2
4、.TheseresultscanbeusedtostudytheintegrabilityofA-harmonicformsandthepropertiesoftherelatedoperatorswhichareappliedtoA-harmonicformsonmanifolds.Wenowintroducesomenotationsusedinthispaper.Throughoutthispaper,wealwaysassumethatMisaRiemannian,compact,orientedandC∞smoothmanifold
5、nn1withoutboundaryonR,andΩisanopensubsetofR,n≥2.WewriteR=R.VVnllnLete1,e2,···,enbethestandardunitbasisofR.Let=(R)bethelinearspaceofl-vectors,spannedbytheexteriorproductseI=ei1∧ei2∧···∧eil,correspondingtoallorderedl-tuplesI=(i1,i2,···,il),1≤i16、Grassmanalgebra=isagradedalgebrawithrespecttotheexteriorproducts.PVPVVForα=αIe∈andβ=βIe∈,theinnerproductinisgivenbyIIXIIhα,βi=αβwithsummationoveralll-tuplesI=(i1,i2,···,il)andallintegersl=0,1,···,n.VVWedefinetheHodgestaroperator∗:→bytherule∗1=e1∧e2∧···∧enandVVα∧∗β=β∧∗α=hα,βi
7、(∗1)forallα,β∈.Thenormofα∈isgivenbytheformula-1-:)W))`2V0V
8、α
9、=hα,αi=∗(α∧∗α)∈=R.TheHodgestarisanisometricisomorphismonwith∗:Vl→Vl−1and∗∗(−1)l(n−l):Vl→Vl.Adifferentiall-formωonMisadeRhamcurrent(see[10,ChapterIII])onMVVlnlwithvaluesin(R).LetMbethelthexteriorpowerofthecota
10、ngentbundleand∞Vl′VlC(M)bethespaceofsmoothl-formsonM.WeuseD(M,)todenotethespaceVof