5.4一元一次方程的应用1

5.4一元一次方程的应用1

ID:38915287

大小:431.50 KB

页数:14页

时间:2019-06-21

5.4一元一次方程的应用1_第1页
5.4一元一次方程的应用1_第2页
5.4一元一次方程的应用1_第3页
5.4一元一次方程的应用1_第4页
5.4一元一次方程的应用1_第5页
资源描述:

《5.4一元一次方程的应用1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、5.4一元一次方程的应用2010年广州亚运会暨第16届亚运会于2010年11月12日至27日在中国广州进行,广州是中国第二个取得亚运会主办权的城市。北京曾于1990年举办第11届亚运会。广州亚运会设42项比赛项目,是亚运会历史上比赛项目最多的一届。2010年亚运会上,我国获得奖牌416枚,其中银牌119枚,金牌数是铜牌数的2倍还多3枚.请你算一算金牌有多少枚?合作学习2010年亚运会上,我国获得奖牌416枚,其中银牌119枚,金牌数是铜牌数的2倍还多3枚.请你算一算金牌有多少枚?(1)能直接列出

2、算式求2010年亚运会我国获得的金牌数吗?(2)如果用列方程的方法来解,设哪个知数为?(3)根据怎样的相等关系来列方程?方程的解是多少?某文艺团体为“希望工程”募捐义演,全价票为每张18元,学生享受半价。某场演出共售出966张票,收入15480元,问这场演出共售出学生票多少张?例1分析题中涉及的数量有人数、票价、总价,它们之间的相等关系是:人数×票价=总票价学生的票价=____×全价票价全价票的总票价+学生的总票价=15480全价票张数+学生票张数=966运用方程解决实际问题的一般过程是:1.审

3、题:分析题意,找出题中的数量及其关系;3.列方程:根据相等关系列出方程;4.解方程:求出未知数的值;5.检验:检查求得的值是否正确和符合实际情形,并写出答案.2.设元:选择一个适当的未知数用字母表示(例如);例2A.B两地相距60千米,甲、乙两人同时从A、B两地骑自行车出发,相向而行。甲每小时比乙多行2千米,经过两小时后相遇。问甲、乙两人的速度分别是多少?本题涉及路程、速度、时间三个基本数量,他们之间具有怎样的关系呢?行程问题(追赶问题)一天小慧步行去上学,速度为每时4千米,小慧离家10分钟时间

4、后,天气预报午后有阵雨,小慧的妈妈急忙骑自行车去给小慧送伞,骑车的速度是12千米/时。问:分析:本题涉及路程、速度、时间三个基本数量,它们之间有如下关系:1、路程=速度×时间(1)小慧的妈妈离家多少时间后追上小慧?(2)追上小慧时,小慧已离家多少千米?2、小慧妈妈的路程=小慧的路程课内练习三个连续奇数的和为57,求这三个数.2.甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开托拖机车,沿同一条路线相向匀速行驶.已知甲的速度为15千米/时,乙的速度为45千米/时.如果甲先行1时后

5、乙才出发,问甲再行多少时间与乙相遇?甲先行1时甲再行x时乙行x时AB180千米17,19,21.环形跑道问题——追及问题理论依据甲乙在同一地点出发,同向而行(甲快,乙慢),当甲追上乙时,肯定比乙多跑了一圈。(第一次甲追上乙)甲乙这时,我们可以看做甲乙在同一地点出发,同向而行,当甲再次追上乙时,肯定又比乙多跑了一圈。(第二次追上时)……从而我们可以发现,每追上一次,甲就比乙多跑一圈,因此,追上的次数就等于多跑的圈数。甲总路程-乙总路程=跑道周长甲总路程-乙总路程=跑道周长+1圈周长甲总路程-乙总路

6、程=跑道周长*N环形跑道问题——相遇问题理论依据甲乙甲乙在同一地点出发,背向而行(甲快,乙慢),当甲与乙第一次相遇时,甲乙共同跑了一圈。由相遇问题,我们有甲总路程+乙总路程=跑道周长同样,我们可以把他们相遇的地点作为起点来看,第二次相遇的时候,甲乙共同又跑了一圈,甲和乙总共跑了两圈,有:甲总路程+乙总路程=跑道周长*2……从而我们可以发现,每相遇一次,甲乙就共同多跑了一圈,因此,相遇的次数就等于共同跑的圈数。甲总路程+乙总路程=跑道周长*N3、今年父亲年龄是儿子年龄的3倍,5年前父亲年龄是儿子年

7、龄的4倍,问今年父亲、儿子各几岁?分析:题中涉及到的数量关系父亲年龄=儿子年龄的3倍父亲年龄=儿子年龄的4倍今年:5年前:可设今年儿子年龄为x,则今年父亲年龄为3x,5年前儿子年龄为x-5,5年前父亲年龄为3x-5,可列出方程:4、从如图的月历表中取一个2×2方块。(1)若这个方块所围成的4个方格的日期之和为44,求这4个方格中的日期。JULY日一二三四五六12345678910111213141516171819202122232425262728293031(2)若这个方块所围成的4个方格的

8、日期之和为108,求这4个方格中的日期。小结(2)列出方程的关键:2.用方程解决行程问题的关键及难点:1.运用方程解决实际问题的一般过程(1)设元的关键是:相关的量要能用X来表示找到相等关系借助线段图寻找合适的相等关系审设列解验

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。