中考复习—方程和不等式

中考复习—方程和不等式

ID:38743329

大小:816.00 KB

页数:12页

时间:2019-06-18

中考复习—方程和不等式_第1页
中考复习—方程和不等式_第2页
中考复习—方程和不等式_第3页
中考复习—方程和不等式_第4页
中考复习—方程和不等式_第5页
资源描述:

《中考复习—方程和不等式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2017年中考复习方程与不等式方程的相关概念1.方程用等号“=”来表示相等关系的式子,叫做等式.等式的性质等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若,则;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若,则,.注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边.(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.(3)在等式变形中,以下两个性质也经常用到:①等式

2、具有对称性,即:如果,那么.②等式具有传递性,即:如果,,那么.含有未知数的等式叫作方程.注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.2.方程的次和元方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.3.方程的已知数和未知数已知数:一般是具体的数值,如中(的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有、、、、等表示.未知数:是指要求的数,未知数通常用、、等字母表示.如:关于

3、、的方程中,、、是已知数,、是未知数.4.方程的解使方程左、右两边相等的未知数的值,叫做方程的解.5.解方程求得方程的解的过程.注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.6.方程解的检验要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是.一元一次方程的定义1.一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的

4、最高次数.2.一元一次方程的形式标准形式:(其中,,是已知数)的形式叫一元一次方程的标准形式.最简形式:方程(,,为已知数)叫一元一次方程的最简形式.注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程与方程是不同的,方程的解需要分类讨论完成.一元一次方程的解法1.解一元一次方程的一般步骤(1)去分母:在方程的两边都乘以各分母的最小公倍数.注意:不要漏乘不含分母的项,分子是

5、个整体,含有多项式时应加上括号.(2)去括号:一般地,先去小括号,再去中括号,最后去大括号.注意:不要漏乘括号里的项,不要弄错符号.(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边.注意:①移项要变号;②不要丢项.(4)合并同类项:把方程化成的形式.注意:字母和其指数不变.(5)系数化为1:在方程的两边都除以未知数的系数(),得到方程的解.注意:不要把分子、分母搞颠倒.2.解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等.含字母

6、系数的一次方程1.含字母系数的一次方程的概念当方程中的系数用字母表示时,这样的方程叫做含字母系数的方程.2.含字母系数的一次方程的解法含字母系数的一元一次方程总可以化为的形式,方程的解由、的取值范围确定.(1)当时,,原方程有唯一解;(2)当且时,解是任意数,原方程有无数解;(3)当且时,原方程无解.一元一次方程的应用应用题是中学数学中的一类重要问题,一般通过对问题中的数量关系进行分析,适当的设未知数,找出等量关系列出方程加以解决.很多同学见到应用题就发怵,觉得题目长,文字多,关系复杂,难以把握.其实应用题关键在于读题,

7、弄懂题意.一些常见的问题,比如行程问题、工程问题、利率问题、浓度问题等等,其中的基本关系一定要深刻理解.设未知数的三种方法1.直接设未知数直接设未知数指题目问什么就设什么,它多适用于要求的未知数只有一个的情况.2.间接设未知数设间接未知数,是指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用.3.引入辅助未知数设辅助未知数,就是为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.辅助未知数往往不需要求出,可以在解题时消去.注意:解应用题的方法多种多样,除此之外,还有运用逆推法解应用题、运用整体思想

8、解应用题、运用图形图表法解应用题等等,单纯的背这些方法是没有意义的,关键还在于提高理解能力,大量练习,从而学会快速读懂题意,综合运用各种方法去求解问题.列方程解应用题的步骤1.审:分析好问题中的已知量和未知量,明确各数量之间的关系,从中找出能够表示实际问题全部含义的相等关系.要注意题中的相等关系有些是明显的,有些是不

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。