欢迎来到天天文库
浏览记录
ID:38557149
大小:195.50 KB
页数:4页
时间:2019-06-14
《会用计算器求算术平方根》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、6.1.2平方根第2课时【教学目标】知识与技能:会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题。过程与方法:通过折纸认识第一个无理数,并通过估计它的大小认识无限不循环小数的特点。用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用。情感态度与价值观:通过探究的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提高学习热情。教学重点:①认识无限不循环小数
2、的特点,会估算一些数的算术平方根。②会用算术平方根的知识解决实际问题。教学难点:认识无限不循环小数的特点,会估算一些数的算术平方根。教学方法:自主探究、启发引导、小组合作教学过程:一、通过实验引入:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形。你知道这个大正方形的边长是多少吗?设大正方形的边长为,则,由算术平方根的意义可知,所以大正方形的边长为。二、讨论的大小:由上面的实验我们认识了,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论的大小
3、。因为<<,所以<<.因为,,所以<<。因为,,所以<<因为,,所以<<……如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们成为无限不循环小数。=……注:这种估算体现了两个方向向中间无限逼近的数学思想,学生第一次接触,不好理解,教师在讲解时速度要放慢,可能需要讲两遍。=……,是个无限不循环小数,但是很抽象,没有办法全部表示出来它的大小,类似这样的数还有很多,比如等,圆周率π也是一个无限不循环小数。三、用计算器求算术平方根:大多数计算器都有“”键,用它可以求出一个有理数的算术平方根或近似值。例1、用计算器求下列各式的值:;(精确
4、到解:(1)依次按键,显示:56.所以(2)依次按键2=,显示:,这是一个近似值。所以注:不同品牌的计算器,按键的顺序可能有所不同。四、探索规律:(1)利用计算器计算,并将计算结果填在表中,你发现了什么规律?…………(2)用计算器计算(结果保留4个有效数字),并利用你发现的规律写出,,的近似值。你能根据的值求出的值吗?学生通过计算器可求出(1)的答案,依次是:。从运算结果可以发现,被开方数扩大或缩小100倍时,它的算术平方根就扩大或缩小10倍。由可得,由的值不能求出的值,因为规律是被开方数扩大或缩小100倍时,它的算术平方根才扩大或缩小10倍,而3到
5、30扩大的是10倍,所以不能由此规律求出。此题学生可独立完成。五、实际应用:例1、小丽想用一块面积为的正方形纸片,沿着边的方向裁出一块面积为的长方形纸片,使它的长与宽之比为:,不知道能否裁出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。”你同意小明的说法吗?小丽能否用这块纸片裁出符合要求的纸片吗?分析:学生一般认为一定能用一块面积大的纸片裁出一块面积小的纸片。通过计算和讲解纠正这种错误的认识。解:设长方形纸片的长为,宽为。根据边长与面积的关系可得:,,,∴长方形纸片的长为。因为﹥,所以﹥,从而﹥即长方形纸片的长应该
6、大于,而已知正方形纸片的边长只有,这样长方形纸片的长将大于正方形纸片的边长。答:不能同意小明的说法。小丽不能用这块正方形纸片裁出符合要求的长方形纸片。六、随堂练习:1.用计算器求下列各式的值:(1)(2)(3)(精确到)2、估计大小:(1)与(2)与3、已知,求,,,的值。七、课堂小结1、被开方数增大或缩小时,其相应的算术平方根也相应地增大或缩小,因此我们可以利用夹值的方法来求出算术平方根的近似值;2、利用计算器可以求出任意正数的算术平方根的近似值;3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?4、怎样的数是无限不循环小数
7、?八、布置作业课本第47页习题6、1第3、5题教学反思:
此文档下载收益归作者所有