二次函数y=ax2的图像性质

二次函数y=ax2的图像性质

ID:38458372

大小:73.75 KB

页数:6页

时间:2019-06-13

二次函数y=ax2的图像性质_第1页
二次函数y=ax2的图像性质_第2页
二次函数y=ax2的图像性质_第3页
二次函数y=ax2的图像性质_第4页
二次函数y=ax2的图像性质_第5页
资源描述:

《二次函数y=ax2的图像性质》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、二章二次函数2.结识抛物线一、学生知识状况分析学生的知识技能基础:学生在前面已经学习过一次函数、反比例函数,经历过探索、分析和建立两个变量之间的一次函数、反比例函数关系的过程,并学会了用描点法作出函数图象的方法。在本章第一节课中,又学习了二次函数的概念,经历了探索和表示二次函数关系的过程,获得了用二次函数表示变量之间关系的体验。学生活动经验基础:在学习一次函数、反比例函数过程中,学会了用描点法作出函数图象的方法,学生已具备了一定的作图能力,并经历了利用一次函数、反比例函数图象探索函数性质的活动,解决了一些简单的现实问题,感受到了数形结合的必要性和重要性,获得了一些探究函数图象和性

2、质的数学活动经验基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。二、教学任务分析教科书基于学生对二次函数的概念认识,提出了本课的具体学习任务:能利用描点法作出函数y=±x2的图象,并能根据图象认识和理解二次函数y=±x2的性质。为此,本节课的教学目标是:(一)知识与技能1.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质.2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同.(二)过程与方法1.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性

3、质的经验.2.由函数y=x2的图象及性质,对比地学习y=-x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.(三)情感与态度1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.教学重点:作出函数y=±x2的图象,并根据图象认识和理解二次函数y=±x2的性质。教学难点:由y=x2的图象及性质对比地学习y=-x2的图象及性质,并能比较出它们的异同点。三、教学过程分析本节课设计了六个教学环节:情

4、境引入、温故知新、合作学习、练习提高、课堂小结、布置作业。第一环节情境引入(生活中的抛物线)活动内容:寻找生活中的抛物线活动目的:通过让学生寻找生活中的抛物线,让生活走进数学,让学生对抛物线有感性认识,以激发学生的求知欲,同时,让学生体会到数学来源于生活。实际教学效果:学生通过开动脑筋,产生联想,寻找出生活中大量的类似抛物线的事物,再通过师生共同鉴定、修正,使学生获得大量对抛物线感性认识的经验。第二环节温故知新活动内容:复习:(1)二次函数的概念,(2)画函数的图象的主要步骤,(3)根据函数y=x2列表活动目的:让学生回忆与本节课有关的主要知识,为本节课探究二次函数的图象和性质做

5、知识上、经验上的准备。实际教学效果:通过对有关知识的复习,学生对二次函数的概念、画函数的图象的主要步骤有了进一步的认识。第三环节合作学习(探究二次函数y=±x2的图象和性质)活动内容:1.用描点法画二次函数y=x2的图象,并与同桌交流。2.观察图象,探索二次函数y=x2的性质,提出问题:(1)你能描述图象的形状吗?与同伴进行交流.(2)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.(3)图象与x轴有交点吗?如果有,交点坐标是什么?(4)当x<0时,随着x的值增大,y的值如何变化?当x>0呢?(5)当x取什么值时,y的值最小?最小值是什么?你是如何

6、知道的?3.二次函数y=-x2的图象是什么形状?先想一想,然后作出它的图象4.它与二次函数y=x2的图象有什么关系?与同伴进行交流。5.说说二次函数y=-x2的图象有哪些性质?与同伴交流。活动目的:1.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.2.由函数y=x2的图象及性质,对比地学习y=-x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.3.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.4.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度

7、看问题,进而比较准确地理解二次函数的性质.实际教学效果:1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.第四环节练习与提高活动内容:1、已知函数是关于x的二次函数。求:(1)满足条件的m的值;(2)m为何值时,抛物线有最低点?求出这个最低点,这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。