资源描述:
《理论力学虚位移原理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第9章虚位移原理建立平衡方程求解系统静力学问题,属于矢量力学的方法。矢量力学的方法,直观、物理意义明确、计算规范,在许多问题中得到广泛应用;但是它具有一定的局限性。虚位移原理引入虚位移的概念,通过作用在质点系上的所有力在虚位移上的虚功关系给出一个普遍适用的平衡的充分必要条件。它是研究任意受约束质点系平衡的十分有效的普遍方法。虚位移原理与达朗贝尔原理是分析力学的两个基本原理。分析力学是继牛顿矢量力学后,针对受约束质点系创立的一种采用标量分析的力学体系。假想一个约束允许的位移——“虚位移”δx(水平向右),则F
2、与P在此虚位移上就作了“虚功”,它们的虚功之和:Fδx-Pδx=0,而由于假想的虚位移δx是任意的,所以有:F-P=0,即:F=P虚位移原理为解决受约束质点系(非自由质点系)的平衡问题提供了一种新的方法。另外,虚位移原理更重要的意义还在于它为分析力学的形成和发展奠定了基础。第9章虚位移原理9.1约束·虚位移·虚功9.1.1约束及其分类限制物体位置或运动的条件称为约束。限制条件的数学方程称为约束方程。限制质点或质点系在空间的几何位置的条件称为几何约束。1.几何约束和运动约束如xy限制质点系运动情况的运动学条件
3、称运动约束。2.定常约束和非定常约束约束方程中显含时间t的约束称为非定常约束。约束方程中不显含时间t的约束称为定常约束。xy3.其它分类约束方程中包含坐标对时间的导数,且不可能积分为有限形式的约束称非完整约束。约束方程是等式的,称双面约束约束方程为不等式的,称单面约束n为质点数,S为约束方程数.约束方程中不包含坐标对时间的导数,或者约束方程中的积分项可以积分为有限形式的约束为完整约束。本章只讨论定常的双面、完整、几何约束。9.1.2自由度与广义坐标非自由质点系的自由度(确定位置的独立参数数目)对于具有完整约
4、束的系统自由度r=3n-l,n质点数,l完整约束数。广义坐标非自由质点系的3n个物理坐标并不独立故取r=(3n-l)个独立参数来描述质点系的位置,这些独立参数叫“广义坐标”。物理坐标可以表示成广义坐标的函数。例:物理坐标:x1,y1,z1;x2,y2,z2;约束方程:x12+y12=a2z1=0z2=0(x2-x1)2+(y2-y1)2=b2广义坐标:a,b坐标变换:x1=asina,y1=acosb,x2=asina+bsinb,y2=acosa+bcosb自由度:2,(n=2,l=4,r=3n-l=2)
5、9.2.1虚位移在某瞬时,质点系在约束允许的条件下,可能实现的任何无限小的位移称为虚位移。只与约束条件有关。虚位移等实位移等实位移是质点系真实实现的位移,它与约束条件、时间、主动力以及运动的初始条件有关。1.虚位移的概念(1)几何法(虚速度法)按系统必须满足的几何关系或运动关系计算。对于定常约束,常用“虚速度”来分析“虚位移”之间的关系。如下例:2.建立虚位移关系的方法看作:drA=vA,drB=vB则A、B的“虚速度”关系有:vA=vBcos60°故有:drA=drBcos60°即:2drA=drB此即所
6、求的虚位移关系式。(2)解析法通过对各有关点的坐标关系式进行变分运算,找出各变分之间的关系即各虚位移之间的关系。如右例:求:机构平衡时F2与F1的对应的虚位移之间的关系。设j为广义坐标(系统是一个自由度),有:对各式变分;变分后的以下三式给出虚位移关系(以dj为“自变量”):9.2.2虚功9.2.3理想约束如果在质点系的任何虚位移中,所有约束力所作虚功的和等于零,称这种约束为理想约束。力在虚位移中作的功称虚功。光滑固定面约束、光滑铰链、无重刚杆,不可伸长的柔索、固定端、轮子只滚不滑等约束为理想约束。即设质点
7、系处于平衡,有或记为此方程称虚功方程,其表达的原理称虚位移原理或虚功原理.9.3虚位移原理及应用对于具有理想约束的质点系,其平衡的充分必要条件是:作用于质点系的所有主动力在任何虚位移中所作的虚功之和等于零。解析式为已知:如图所示,在螺旋压榨机的手柄AB上作用一在水平面内的力偶(),其力矩,螺杆的导程为 。螺杆与螺母间的摩擦忽略不计。求:机构平衡时加在被压物体上的力.例题1解:1、以手柄、螺杆和压板组成的系统为研究对象,受力如图。力偶M对应的虚位移力FN对应的虚位移2、由虚位移原理3、虚位移关系分析代入上式得
8、已知:图中所示结构,各杆自重不计,在G点作用一铅直向上的力F,.求:支座B的水平约束力.例题2解:解除B端水平约束,以力代替,如图(b).代入虚功方程解得如图在CG间加一弹簧,刚度k,且已有伸长量,仍求。在弹簧处也代之以力,如图。虚位移关系分析已知:如图所示机构,不计各构件自重与各处摩擦。求:机构在图示位置平衡时,主动力偶矩M与主动力F之间的关系。例题3解:虚位移由图中关系有代入虚功方程得求:支座A的约束力.已知