计数原理、概率、随机变量及其分布2

计数原理、概率、随机变量及其分布2

ID:37583306

大小:203.00 KB

页数:7页

时间:2019-05-25

计数原理、概率、随机变量及其分布2_第1页
计数原理、概率、随机变量及其分布2_第2页
计数原理、概率、随机变量及其分布2_第3页
计数原理、概率、随机变量及其分布2_第4页
计数原理、概率、随机变量及其分布2_第5页
资源描述:

《计数原理、概率、随机变量及其分布2》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、1、写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果。(1)一个口袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数为。(2)投掷两枚骰子,所得点数之和为X,所得点数的最大值为Y。2、一袋装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3球鞋,以X表示取出球的最大号码,求X的分布列。3、某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核(1)求从甲、乙两组各抽取的人数;(I2)求从甲组抽取的工人中恰有1名女工人的概率;(3)记

2、表示抽取的3名工人中男工人数,求的分布列及数学期望。4、某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记为3人中参加过培训的人数,求的分布列.5、甲、乙两人各射击一次,击中目标的概率分布是和。假设两人射击是否击中目标相互之间没有影响,每人各次射击是否击中目标,相互之间也没有影响。(1)求甲射击4次,至少有1次未

3、击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击.问:乙恰好射击5次后,补中止射击的概率是多少?6、甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用ε表示甲队的总得分.(Ⅰ)求随机变量ε分布列和数学期望;(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).7、设X~N(5,1),求P(6<X<7)。8、如图是一个正态

4、曲线。试根据该图象写出其正态曲线函数解析式,求出总体随机变量的期望和方差。1.已知随机变量X服从正态分布N(3.1),且=0.6826,则p(X>4)=()A、0.1588B、0.1587C、0.1586D0.15852.已知随机变量Z服从正态分布N(0,),若P(Z>2)=0.023,则P(-2≤Z≤2)=()(A)0.477(B)0.625(C)0.954(D)0.9773.某射手射击所得环数的分布列如下:78910Px0.10.3y已知的期望E=8.9,则y的值为.4.(2010四川理数)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”

5、字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.5.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是()A.5B.9C.10D.256.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P(ξ=12)等于()A.C()10·()2B.C()9()2·C.C()9·()2D.C()9·()27.设服从二项分布B(n,

6、p)的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n、p的值为()A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.18.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为()A.2.44B.3.376C.2.376D.2.49.设投掷1颗骰子的点数为ξ,则()A.Eξ=3.5,Dξ=3.52B.Eξ=3.5,Dξ=C.Eξ=3.5,Dξ=3.5D.Eξ=3.5,Dξ=10.设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是()A.Eξ=0.1B.Dξ

7、=0.1C.P(ξ=k)=0.01k·0.9910-kD.P(ξ=k)=C·0.99k·0.0110-k11.已知ξ~B(n,p),且Eξ=7,Dξ=6,则p等于()A.B.C.D.12.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ等于()A.0.2B.0.8C.0.196D.0.80413.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。