欢迎来到天天文库
浏览记录
ID:37180188
大小:1.13 MB
页数:24页
时间:2019-05-11
《12.2 第3课时 “角边角”、“角角边”》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、12.2三角形全等的判定第十二章全等三角形导入新课讲授新课当堂练习课堂小结第3课时“角边角”、“角角边”八年级数学上(RJ)教学课件情境引入学习目标1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.2.会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.导入新课如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?情境引入321讲授新课三角形全等的判定(“角边角”定理)一问题:如果已知一个三角形的两角及一边,那么有几种可能的情况呢?ABCABC图一图二
2、“两角及夹边”“两角和其中一角的对边”它们能判定两个三角形全等吗?作图探究先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即使两角和它们的夹边对应相等).把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?ACBACBA′B′C′ED作法:(1)画A'B'=AB;(2)在A'B'的同旁画∠DA'B'=∠A,∠EB'A'=∠B,A'D,B'E相交于点C'.想一想:从中你能发现什么规律?知识要点“角边角”判定方法文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).几何语言:∠A=∠A′(已知),AB=A′
3、B′(已知),∠B=∠B′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(ASA).ABCA′B′C′例1已知:∠ABC=∠DCB,∠ACB=∠DBC,求证:△ABC≌△DCB.∠ABC=∠DCB(已知),BC=CB(公共边),∠ACB=∠DBC(已知),证明:在△ABC和△DCB中,∴△ABC≌△DCB(ASA).典例精析BCAD判定方法:两角和它们的夹边对应相等两个三角形全等.例2如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:AD=AE.ABCDE分析:证明△ACD≌△ABE,就可以得出AD=AE.证明:在△ACD和△ABE中,∠A=∠A(
4、公共角),AC=AB(已知),∠C=∠B(已知),∴△ACD≌△ABE(ASA),∴AD=AE.问题:若三角形的两个内角分别是60°和45°,且45°所对的边为3cm,你能画出这个三角形吗?60°45°用“角角边”判定三角形全等二合作探究60°45°思考:这里的条件与1中的条件有什么相同点与不同点?你能将它转化为1中的条件吗?75°两角和其中一角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”.归纳总结∠A=∠A′(已知),∠B=∠B′(已知),AC=A′C′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(AAS).ABCA′B′C′例3:在△ABC
5、和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.∠B=∠E,BC=EF,∠C=∠F.证明:在△ABC中,∠A+∠B+∠C=180°.∴△ABC≌△DEF(ASA).∴∠C=180°-∠A-∠B.同理∠F=180°-∠D-∠E.又∠A=∠D,∠B=∠E,∴∠C=∠F.在△ABC和△DEF中,例4如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;证明:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB⊥AC,∴∠B
6、AD+∠CAE=90°,∠ABD=∠CAE.在△BDA和△AEC中,∠ADB=∠CEA=90°,∠ABD=∠CAE,AB=AC,∴△BDA≌△AEC(AAS).(2)DE=BD+CE.∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.证明:∵△BDA≌△AEC,方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.1.△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,则下列补充的条件中错误的是()A.AC=DFB.BC=EFC.∠A=∠DD.∠C=∠F2.在△ABC与
7、△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69°,∠A′=44°,且AC=A′C′,那么这两个三角形( )A.一定不全等 B.一定全等C.不一定全等 D.以上都不对当堂练习AB3.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.不全等,因为BC虽然是公共边,但不是对应边.ABCDABCDEF4.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件,才能使△ABC≌△DEF(写出一个即可).∠B=∠E或∠A
此文档下载收益归作者所有