欢迎来到天天文库
浏览记录
ID:37098681
大小:340.50 KB
页数:14页
时间:2019-05-17
《2012年江苏省南通市数学学科基地高考考前数学密卷(二)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、江苏省南通市2012届高三数学学科基地密卷(二)注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折
2、叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答卷纸的相应位置上.1.若复数z满足(i是虚数单位),则z=▲.2.已知集合A={x
3、6x+a>0},若1A,则实数a的取值范围是▲.3.命题p:函数y=tanx在R上单调递增,命题q:△ABC中,∠A>∠B是sinA>sinB的充要条件,则p∨q是▲命题.(填“真”“假”)4.某地区为了解中学生的日平均睡眠时间(单位:h),随机选择了位中学生进行调查,根据所得数据画出样本的频率分布直方图如图所示,且从左到右的第1个、第4个、第2个、第3个小长方形的面积依次构
4、成公差为0.1的等差数列,又第一小组的频数是10,则▲.5.把一颗骰子投掷2次,观察出现的点数,记第一次出现的点数为,第二次出现的点数为,则方程组只有一个解的概率为▲.6.如果,那么=▲.7.已知双曲线的一个焦点在圆上,则双曲线的渐近线方程为▲.8.程序框图如下,若恰好经过6次循环输出结果,则a=▲.N开始输出TY结束9.将函数y=sin(2x+)的图象向左平移至少▲个单位,可得一个偶函数的图象.10.已知直线平面,直线平面,给出下列命题:①若,则; ②若,则;③若,则; ④若,则.其中正确命题的序号是▲.111111…123456…1357911…147101316…159
5、131721…1611162126……………………11.某资料室在计算机使用中,产生如右表所示的编码,该编码以一定的规则排列,且从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…的一个通项公式=▲.12.在中,A(1,1),B(4,5),C(—1,1),则与角A的平分线共线且方向相同的单位向量为▲.13.已知函数f(x)满足f(1)=,f(x)+f(y)=4f()f()(x,y∈R),则f(—2011)=▲.14.已知二次函数,若函数在上有两个不同的零点,则的最小值为▲.二、解答题:本大题共6小题,共计90分.请把答案写在答题卡相应的位置上.解答时应
6、写出文字说明,证明过程或演算步骤.15.(本题满分14分)已知ABC的面积S满足,且=—8.(Ⅰ)求角A的取值范围;(Ⅱ)若函数,求的最大值.16.(本题满分14分)如图,把长、宽分别为4、3的长方形ABCD沿对角线AC折成直二面角.(Ⅰ)求顶点B和D之间的距离;ACBE.D(Ⅱ)现发现BC边上距点C的处有一缺口E,请过点E作一截面,将原三棱锥分割成一个三棱锥和一个棱台两部分,为使截去部分体积最小,如何作法?请证明你的结论.ABCDE.17.(本题满分15分)如图,已知:椭圆M的中心为O,长轴的两个端点为A、B,右焦点为F,AF=5BF.若椭圆M经过点C,C在AB上的射影为F,且
7、△ABC的面积为5.(Ⅰ)求椭圆M的方程;(Ⅱ)已知圆O:=1,直线=1,试证明:当点P(m,n)在椭圆M上运动时,直线l与圆O恒相交;并求直线l被圆O截得的弦长的取值范围.xOFAF1BCy18.(本题满分15分)各项均为正数的等比数列,a1=1,=16,单调增数列的前n项和为,,且().(Ⅰ)求数列、的通项公式;(Ⅱ)令(),求使得的所有n的值,并说明理由.(Ⅲ)证明中任意三项不可能构成等差数列.19.(本题满分16分)由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量(单位:吨)与上市时间(单位:月)的关系大致如图(1)所示的折线表示,销售价格(单位:元/
8、千克)与上市时间(单位:月)的大致关系如图(2)所示的抛物线段表示(为顶点).(Ⅰ)请分别写出,关于的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?(Ⅱ)图(1)中由四条线段所在直线围成的平面区域为,动点在内(包括边界),求的最大值;(Ⅲ)由(Ⅱ),将动点所满足的条件及所求的最大值由加法运算类比到乘法运算(如类比为),试列出所满足的条件,并求出相应的最大值.(图1)(图2)20.(本题满分16分)如果实数x,y,t满足
9、x—t
10、≤
11、y—t
12、,则称x比y接近t.(Ⅰ)设
此文档下载收益归作者所有