资源描述:
《2008年全国高考数学试题及答案-江苏卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数学本试卷分第I卷(填空题)和第II卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.
2、4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.参考公式:锥体体积公式其中为底面积,为高球的表面积、体积公式,其中R为球的半径样本数据,,,的标准差其中为样本平均数柱体体积公式其中为底面积,为高一、填空题:本大题共1小题,每小题5分,共70分.1.的最小正周期为,其中,则=▲.2.一个骰子连续投2次,点数和为4的概率▲.3.表示为,则=▲.4.A=,则AZ的元素的个数▲.5.,的夹角为,,则▲.6.在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于
3、1的点构成的区域,向D中随机投一点,则所投的点落入E中的概率是▲.7.某地区为了解70-80岁老人的日平均睡眠时间(单位:h),随即选择了50为老人进行调查,下表是这50为老人日睡眠时间的频率分布表。序号(i)分组(睡眠时间)组中值(Gi)频数(人数)频率(Fi)1[4,5]4.560.122[5,6]5.5100.203[6,7]6.5200.404[7,8]7.5100.205[8,9]8.540.08在上述统计数据的分析中,一部分计算见算法流程图,则输出的S的值是▲。8.设直线是曲线的一条切线,则实数b=▲.9在平面直角坐标系xOy中,设三角形ABC的顶点分
4、别为A(0,a),B(b,0),C(c,0),点P(0,p)在线段AO上的一点(异于端点),设a,b,c,p均为非零实数,直线BP,CP分别与边AC,AB交于点E、F,某同学已正确求得OE的方程:,请你完成直线OF的方程:(▲).10.将全体正整数排成一个三角形数阵:123456789101112131415.......按照以上排列的规律,数阵中第n行(n≥3)从左向右的第3个数为▲.11.已知,满足,则的最小值是▲.12.在平面直角坐标系xOy中,设椭圆1(0)的焦距为2c,以点O为圆心,为半径作圆M,若过点P所作圆M的两条切线互相垂直,则该椭圆的离心率为=▲
5、.13.满足条件AB=2,AC=BC的三角形ABC的面积的最大值是▲.14.设函数(x∈R),若对于任意,都有≥0成立,则实数=▲.二、解答题:本大题共6小题,共计90分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.如图,在平面直角坐标系xOy中,以Ox轴为始边做两个锐角,,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为.(Ⅰ)求tan()的值;(Ⅱ)求的值.16.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点,求证:(Ⅰ)直线EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.17.如
6、图,某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处,已知AB=20km,CB=10km,为了处理三家工厂的污水,现要在该矩形ABCD的区域上(含边界),且与A、B等距离的一点O处建造一个污水处理厂,并铺设三条排污管道AO,BO,OP,设排污管道的总长为km.(Ⅰ)按下列要求写出函数关系式:①设∠BAO=(rad),将表示成的函数关系式;②设OP(km),将表示成的函数关系式.(Ⅱ)请你选用(Ⅰ)中的一个函数关系,确定污水处理厂的位置,使三条排污管道总长度最短.18.设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记
7、为C.(Ⅰ)求实数b的取值范围;(Ⅱ)求圆C的方程;(Ⅲ)问圆C是否经过某定点(其坐标与b无关)?请证明你的结论.19.(Ⅰ)设是各项均不为零的等差数列(),且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:①当n=4时,求的数值;②求的所有可能值;(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列,其中任意三项(按原来顺序)都不能组成等比数列.20.若,,为常数,函数f(x)定义为:对每个给定的实数x,(Ⅰ)求对所有实数x成立的充要条件(用表示);(Ⅱ)设为两实数,满足,且∈,若,求证:在区间上的单调增区间的长度之
8、和为(闭区