2018_2019学年高中数学第二章推理与证明2.2.2反证法习题新人教a版

2018_2019学年高中数学第二章推理与证明2.2.2反证法习题新人教a版

ID:35792425

大小:75.86 KB

页数:6页

时间:2019-04-18

2018_2019学年高中数学第二章推理与证明2.2.2反证法习题新人教a版_第1页
2018_2019学年高中数学第二章推理与证明2.2.2反证法习题新人教a版_第2页
2018_2019学年高中数学第二章推理与证明2.2.2反证法习题新人教a版_第3页
2018_2019学年高中数学第二章推理与证明2.2.2反证法习题新人教a版_第4页
2018_2019学年高中数学第二章推理与证明2.2.2反证法习题新人教a版_第5页
资源描述:

《2018_2019学年高中数学第二章推理与证明2.2.2反证法习题新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一章 2.2 2.2.2反证法A级 基础巩固一、选择题1.设a、b、c∈(-∞,0),则a+,b+,c+( C )A.都不大于-2     B.都不小于-2C.至少有一个不大于-2D.至少有一个不小于-2[解析] 假设都大于-2,则a++b++c+>-6,但(a+)+(b+)+(c+)=(a+)+(b+)+(c+)≤-2+(-2)+(-2)=-6,矛盾.2.(2018·湖北期中)已知a,b,c∈(0,+∞),则下列三个数a+,b+,c+( D )A.都大于6B.至少有一个不大于6C.都小于6D.至少有一个

2、不小于6[解析] 设a+,b+,c+都小于6,则a++b++c+<18,利用基本不等式可得a++b++c+≥2+2+2=8+4+6=18,这与假设所得结论矛盾,故假设不成立,故下列三个数a+,b+,c+至少有一个不小于6,故选D.3.(2017·青岛高二检测)有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两名是对的,则获奖的歌手是( C )A.甲B.乙C.丙D.丁[解析] 若甲

3、获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.4.(2017·济南高二检测)设实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于( B )A.0B.C.D.1[解析] 三个数a、b、c的和为1,其平均数为,故三个数中至少有一个大于或等于.假设a、b、c都小于,则a+b+c<1,与已知矛盾.5.设a、b、c∈R+,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是P、Q、R同时大于零的( C )A.充分而不必要条件B.必要而不充分条

4、件C.充要条件D.既不充分又不必要条件[解析] 若P>0,Q>0,R>0,则必有PQR>0;反之,若PQR>0,也必有P>0,Q>0,R>0.因为当PQR>0时,若P、Q、R不同时大于零,则P、Q、R中必有两个负数,一个正数,不妨设P<0,Q<0,R>0,即a+b0,Q>0,R>0.6.若m、n∈N*,则“a>b”是“am+n+bm+n>anbm+ambn”的( D )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必

5、要条件[解析] am+n+bm+n-anbm-ambn=an(am-bm)+bn(bm-am)=(am-bm)(an-bn)>0⇔或,不难看出a>b⇒/am+n+bm+n>ambn+anbm,am+n+bm+n>ambn+bman⇒/a>b.二、填空题7.(2018·思明区校级期中)用反证法证明某命题时,对于“已知a1+a2+a3+a4>100,求证:a1,a2,a3,a4中至少有一个数大于25”.正确的反设为a1,a2,a3,a4都不大于25.[解析] 根据反证法的步骤,则应先假设a1,a2,a3,a4都

6、不大于25.故答案为a1,a2,a3,a4都不大于25.8.完成反证法证题的全过程.题目:设a1,a2,…,a7是1,2,…,7的一个排列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.证明:假设p为奇数,则a1-1,a2-2,…,a7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=(a1-1)+(a2-2)+…+(a7-7)=(a1+a2+…+a7)-(1+2+…+7)=0.但奇数≠偶数,这一矛盾说明p为偶数.[解析] 假设p为奇数,则a1-1,a2-2,…,a7-7均为奇数,因为奇数个奇数

7、之和为奇数,故有奇数=(a1-1)+(a2-2)+…+(a7-7)=(a1+a2+…+a7)-(1+2+…+7)=0.但奇数≠偶数,这一矛盾说明p为偶数.三、解答题9.(2016·吉林高二检测)已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.[解析] 假设a,b,c,d都是非负数,因为a+b=c+d=1,所以(a+b)(c+d)=1,又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,这与已知ac+bd>1矛盾,所以a,b,c

8、,d中至少有一个是负数.10.(2017·深圳高二检测)设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.[解析] 假设f(x)=0有整数根n,则an2+bn+c=0,由f(0)为奇数,即c为奇数,f(1)为奇数,即a+b+c为奇数,所以a+b为偶数,又an2+bn=-c为奇数,所以n与an+b均为奇数,又a+b为偶数,所以an-a为奇数,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。