整式的乘除与因式分解教师教学案68799

整式的乘除与因式分解教师教学案68799

ID:34771150

大小:319.00 KB

页数:37页

时间:2019-03-10

整式的乘除与因式分解教师教学案68799_第1页
整式的乘除与因式分解教师教学案68799_第2页
整式的乘除与因式分解教师教学案68799_第3页
整式的乘除与因式分解教师教学案68799_第4页
整式的乘除与因式分解教师教学案68799_第5页
资源描述:

《整式的乘除与因式分解教师教学案68799》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第十五章整式乘除与因式分解教材内容本章的主要内容是整式的乘除运算、乘法公式和因式分解。这些知识是以后学习分式和根式运算、函数知识的基础,也是学习物理、化学等学科不可或缺的数学工具。矚慫润厲钐瘗睞枥庑赖。幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是学习整式乘法的基础,作为它的直接应用,接着安排了单项式乘法,在此基础上,引进单项式与多项式及多项式与多项式的乘法。这样安排从简到繁,由易到难,层层递进。乘法公式是在学习整式乘法基础上得到的。教材安排了三个多项式乘法的计算,通过总结它们的共同点,把它们作为公式,即平方差公式。接着用类

2、似的方式引进了乘法的完全平方公式,之后,适时引进添括号法则,以满足整式运算的需要。同底数幂的除法是学习整式除法的基础,教材首先介绍同底数幂的除法性质,接着根据乘、除互为逆运算的关系,并以分配律、同底数幂的除法为依据,由计算具体的实例得到单项式除法的法则。多项式除以单项式的基本点就是把多项式除以单项式转化为单项式除法。聞創沟燴鐺險爱氇谴净。从整式乘法与因式分解的关系认识因式分解的概念,同时从整式乘法与因式分解的关系介绍了因式分解的基本方法,即提公因式法和公式法。这些内容是多项式因式分解中一部分最基本的知识和基本方法。残骛楼諍锩瀨濟溆

3、塹籟。教学目标[知识与技能]1、使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。2、使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。3、使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。4、使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的变形,掌握提公因式法和运用公式

4、法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。酽锕极額閉镇桧猪訣锥。[过程与方法]通过由特殊到一般的猜想与说理验证,培养学生一定的说理能力和归纳表达能力;重视学生对算理的理解,有意识地培养学生条理性和表达能力;在探索因式分解方法的过程中,学会逆向思维,渗透化归的思想方法。彈贸摄尔霁毙攬砖卤庑。[情感与态度]36让学生主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯;在计算过程中发现规律,并能用符号表示,从而体会数学的简洁美;在灵活运用公式的过程中,

5、提倡多样化算法,激发学生学习数学的兴趣,培养创新能力和探索精神。謀荞抟箧飆鐸怼类蒋薔。重点难点整式的乘除法,乘法公式及因式分解的两种方法是重点;灵活的运用乘法公式,添括号法则和灵活地运用公式法分解因式是难点。厦礴恳蹒骈時盡继價骚。课时安排15.1整式的乘法………………………………………………4课时15.2乘法公式…………………………………………………3课时15.3整式的除法………………………………………………3课时15.4因式分解…………………………………………………3课时本章小结………………………………………………………2课时3

6、615.1同底数的幂相乘[教学目标]1、理解同底数幂的乘法法则,掌握其公式的运用;2、通过由特殊到一般的推导过程,培养学生的猜想、归纳和表达能力。茕桢广鳓鯡选块网羈泪。[重点难点]同底数幂的乘法公式及其运用是重点;理解同底数幂的乘法公式是难点。[教学过程]一、情景导入一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?可进行1014×103次运算.如何计算1012×103呢?根据乘方的意义可知1014×103=(10×…×10)×(10×10×10)14个10=(10×10×…×10)=101717个10容易知

7、道1012×103是同底数的幂相乘。上面的计算有没有规律呢?二、同底数幂的乘法法则探究:根据乘方的意义填空:(1)25×22=2();(2)a3·a2=a();(3)5m·5n=5()(m、n都是正整数)。你发现了什么?这三个式子都是同底数的幂相乘;相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.一般地,对于任意底数a与任意正整数m、n,am·an的幂是多少呢?am×an=(aa…a)(aa…a)=aa…a=am+nm个an个am+n个a因此,我们有am·an=am+n(m、n都是正整数)用语言叙述是:同底数幂相乘,底数

8、不变,指数相加.三、例题例1计算:(1)x2·x5(2)a·a6(3)2×24×23(4)xm·x3m+1分析:式子表示什么运算?结果是多少?36解:(1)x2·x5=x2+5=x7.(2)a·a6=a1·a6=a1+6=a7.(3)2×24×23

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。