二次函数历年中考压轴题(定值问题)解析精选

二次函数历年中考压轴题(定值问题)解析精选

ID:34665092

大小:1001.50 KB

页数:20页

时间:2019-03-08

二次函数历年中考压轴题(定值问题)解析精选_第1页
二次函数历年中考压轴题(定值问题)解析精选_第2页
二次函数历年中考压轴题(定值问题)解析精选_第3页
二次函数历年中考压轴题(定值问题)解析精选_第4页
二次函数历年中考压轴题(定值问题)解析精选_第5页
资源描述:

《二次函数历年中考压轴题(定值问题)解析精选》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、二次函数中考压轴题(定值问题)解析精选【例1】(2013•南通)如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.考点:二次函数综合题专题:压轴题.分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值;(2)先由y=kx

2、+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1•y2=64,即点(y1,y2)在反比例函数的图象上;(3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,又易得x1•x2=﹣64,则OA2+OB2=AB2,根据勾股定理的逆定理得出∠AOB=90°.再过点A作A

3、E⊥x轴于点E,过点B作BF⊥x轴于点F,根据两角对应相等的两三角形相似证明△AEO∽△OFB,由相似三角形对应边成比例得到=,即可证明x1•OB+y2•OA=0.解答:(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,与y轴相交于点C,∴令x=0,得y=b;令y=0,x=﹣,∴△OCD的面积S=(﹣)•b=﹣.∵kS+32=0,∴k(﹣)+32=0,第20页共20页解得b=±8,∵b>0,∴b=8;(2)证明:由(1)知,直线的解析式为y=kx+8,即x=,将x=代入y=x2,得y=()2,整理,得y2﹣(16+8k2)y+

4、64=0.∵直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,∴y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,∴y1•y2=64,∴点(y1,y2)在反比例函数的图象上;(3)证明:由勾股定理,得OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,同理,将y=kx+8代入y=x2,得kx+8=x2,即x2﹣8kx﹣64=0,∴x1•x2=﹣64,∴AB2=+++﹣2x1•x2﹣2y1•y2=+++,又∵OA2+OB2=+++,∴OA2+OB2=AB2,∴△OA

5、B是直角三角形,∠AOB=90°.如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵∠AOB=90°,∴∠AOE=90°﹣∠BOF=∠OBF,又∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴=,∵OE=﹣x1,BF=y2,∴=,∴x1•OB+y2•OA=0.第20页共20页点评:本题是二次函数的综合题型,其中涉及到的知识点有二次函数、反比例函数图象上点的坐标特征,三角形的面积,一次函数与二次函数的交点,一元二次方程根与系数的关系,勾股定理及其逆定理,相似三角形的判定与性质,综合性较强,难度适中.求出△OCD的面积S是解第

6、(1)问的关键;根据函数与方程的关系,得到y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,进而得出y1•y2=64是解第(2)问的关键;根据函数与方程的关系,一元二次方程根与系数的关系,勾股定理及其逆定理得出∠AOB=90°,是解第(3)问的关键.【例2】(2013•吉林)如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=x2于点A、B,交抛物线C2:y=x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.矚慫润厲钐瘗睞枥庑赖。【

7、猜想与证明】填表:m123由上表猜想:对任意m(m>0)均有=.请证明你的猜想.【探究与应用】(1)利用上面的结论,可得△AOB与△CQD面积比为;(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;【联想与拓展】如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为.聞創沟燴鐺險爱氇谴净。第20页共20页考点:二次函数综合题分析:猜想与证明:把P点的纵坐标分别代入C1、C2的解析式就可以AB、C

8、D的值,就可以求出结论,从而发现规律得出对任意m(m>0)将y=m2代入两个二次函数的解析式就可以分别表示出AB与CD的值,从而得出均有=;探究与证明:(1)由条件可以得出△AOB与△CQD高

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。