概率论与数理统计案例教学方法探析new

概率论与数理统计案例教学方法探析new

ID:34436201

大小:304.18 KB

页数:4页

时间:2019-03-06

概率论与数理统计案例教学方法探析new_第1页
概率论与数理统计案例教学方法探析new_第2页
概率论与数理统计案例教学方法探析new_第3页
概率论与数理统计案例教学方法探析new_第4页
资源描述:

《概率论与数理统计案例教学方法探析new》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第31卷第3期沈阳师范大学学报(自然科学版)Vol.31No.32013年7月JournalofShenyangNormalUniversity(NaturalScience)Jul.2013文章编号:1673-5862(2013)03-0372-04概率论与数理统计案例教学方法探析王昕,程希明(北京信息科技大学理学院,北京100192)摘要:概率论与数理统计不仅是数学专业的必修课,也是经管类和工科类专业的基础课,其覆盖面广,应用性强,是一门理论与实践密切结合的课程。以案例驱动教学法作为概率论与数理统计课程教学方法改革的一种手段,有针对性的选取了条件

2、概率、全概率公式、数学期望、大数定律等4个重要的知识点,并使用贴近实际生活的案例作为教学的切入点,详细分析解决实际问题的过程,向学生介绍该课程的相关知识在现实中的广泛应用,引导学生从实际情境中发现问题。课堂教学实践证明,基于案例驱动的教学方法能够开阔学生的视野,对于课程建设、教学效果、教师及学生能力的提高都有重要意义。关键词:案例驱动;全概率;数学期望;大数定律;置信区间中图分类号:O212.1文献标志码:Adoi:10.3969/j.issn.1673-5862.2013.03.0140引言概率论与数理统计是国内外经济管理类各专业学生教学大纲中必不

3、可少的公共基础课,是向学生[1-2]传授随机现象及其规律,培养学生使用随机思想分析问题能力的重要途径。很多其他后续课程,如统计学、证券投资学、信息论、密码学等都需要以概率统计知识为前提。经济管理专业学生毕业后大多从事经济贸易、金融投资、银行、证券、保险等工作,在工作中会遇到许多随机现象,如证券价值的变动、[3-11]购买保险的人数、商品的库存和收益等,这些工作的完成也需要依赖概率统计知识。因此,让学生轻松、愉快的学好这门课程成为了摆在每个老师面前亟待解决的问题。不少学生在刚开始学习概率统计,尤其是初遇古典概型时,很有兴趣,也能够联系实际主动思考,但随

4、着后续知识中公式、定理的逐渐增多,他们认为越来越枯燥,以致越学越没有兴趣,这一点应值得重视和思考。概率统计的思想方法来源于生活,教学中应处处有案例,从贴近生活或与学生专业相关的问题入手,用身边常见的现象和例子说明问题,从问题到理论,再从理论到应用,而不是生硬的从概念到理论,不仅可以激发学生的学习热情,减少距离感,强化实践意识,提高学生分析问题和解决问题的能力,[12-14]还可以拓展学生的视野,从而提高学习的兴趣与效率。下面选取概率统计中有代表性的4个知识点,提出贴近现实、清晰易懂的案例,引导学生积极思考,自主求解,变被动学习为主动学习。1条件概率与

5、三门问题这个问题来自于美国的一个电视节目,参与者会看见3扇关闭了的门,其中1扇的后面有1辆汽车,选中后面有车的那扇门就可赢得该汽车,另外2扇门后面则各藏有1只山羊。当参与者选定了1扇门,但未去开启它的时候,节目主持人开启剩下2扇门的其中1扇,露出其中1只山羊。随后主持人问参与者要不要改选另1扇仍然关上的门。需要思考的是:改选另1扇门会不会增大参赛者赢得汽车的收稿日期:2012-10-12。基金项目:北京市委组织部优秀人才项目(2011D005007000005);北京信息科技大学教学改革基金资助项目(2011JGYB45)。作者简介:王昕(1978-

6、),女,河北邯郸人,北京信息科技大学讲师,博士。第3期王昕,等:概率论与数理统计案例教学方法探析373机会。这个有趣的问题提出后,一定会引发学生热烈的讨论。这一问题的答案是———应该换,但是许多学生都想不通,他们认为换不换一样,赢得汽车的概率都是1/3。实际上,问题的关键在于主持人,不应该忽略这样一个线索,即主持人一定会开启1扇没有汽车的门。使用条件概率的思考方法就可以解决这个问题。假设事件A为参与者第一次选中山羊;事件B为参与者改选另1扇门之后得到汽车。根据条件有21P(A)=,P(A珡)=,P(B|A)=1,P(B|A珡)=0。则33212P(B

7、)=P(B|A)·P(A)+P(B|A珡)·P(A珡)=1×+0×=333也就是说,如果坚持原来的选择,赢得汽车的机会是1/3,而选择另1扇门,赢得汽车的机会增加到了2/3,所以应该改变原来的选择。可以进一步思考,若主持人事先不知道任何信息,而是随机开启某1扇门,即打开的1扇门之后有可能是汽车,也有可能是山羊,那么问题的答案是否会改变呢。2全概率公式与囚徒的智慧在现实的各种领域,如经济、医学、生产等方面,常常会涉及到各种概率问题,但这些事件会有各种类型的条件限制和复杂的样本空间,导致在计算概率时,思路不清晰,甚至重复或遗漏了某些情况发生的可能性。全概

8、率公式应运而生,能够化繁为简。以一个古代小故事为例来说明这个问题。1名囚犯要被执行死刑,按照传统,执行死刑前

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。