欢迎来到天天文库
浏览记录
ID:34151217
大小:153.00 KB
页数:9页
时间:2019-03-04
《2019学年中考数学《二次函数》专项训练(含答案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018~2019数学中考专项训练:二次函数【沙盘预演】1.计算(﹣2a2b)3的结果是( )A.﹣6a6b3B.﹣8a6b3C.8a6b3D.﹣8a5b3【解析】解:(﹣2a2b)3=﹣8a6b3.故选B.2.列式子的计算结果为26的是( )A.23+23B.23•23C.(23)3D.212÷22【解析】解:A、原式=23•(1+1)=24,不合题意;B、原式=23+3=26,符合题意;C、原式=29,不合题意;D、原式=212﹣2=210,不合题意.故选B.3.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两
2、点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c(a≠0)有一个根为﹣其中正确的结论个数有( )A.1个B.2个C.3个D.4个【分析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y<0,可判断②;由OA=OC,且OA<1,可判断③;把﹣代入方程整理可得ac2﹣bc+c=0,结合③可判断④;从而可得出答案.4.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②
3、a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )A.①④B.②③C.①②④D.①③④【解析】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.5.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数
4、根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为( )A.1个B.2个C.3个D.4个【解析】解:∵b>a>0∴﹣<0,所以①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;所以③正确;当x=﹣2时,4a﹣2b+c≥0a+b+c≥3b﹣3aa+b+c≥3(b﹣a)≥3所以④正确.故选:D.6.如图,坐标平面上,二次函数y=﹣x2+4
5、x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?( )A.1B.C.D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.故选:D.7.计算(2a3)2的结果是( )A.4a6B.4a5C.2a6D.2a5【解析】解:(2a3)2=4a6.故选A.8.下列计算中,正确的是(
6、 )A.a+a11=a12B.5a﹣4a=aC.a6÷a5=1D.(a2)3=a5【解析】解:A、a与a11是相加,不是相乘,所以不能利用同底数幂相乘的性质计算,故A错误;B、5a﹣4a=a,故B正确;C、应为a6÷a5=a,故C错误;D、应为(a2)3=a6,故D错误.故选:B.9.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为( )A.1或﹣5B.﹣1或5C.1或﹣3D.1或3【解析】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若
7、h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.10.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是( )A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【解析】解:∵y=﹣x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对
8、称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,故
此文档下载收益归作者所有