三角函数的值域与最值

三角函数的值域与最值

ID:34079198

大小:117.76 KB

页数:3页

时间:2019-03-03

三角函数的值域与最值_第1页
三角函数的值域与最值_第2页
三角函数的值域与最值_第3页
资源描述:

《三角函数的值域与最值》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第7课三角函数的值域与最值【考点导读】1.掌握三角函数的值域与最值的求法,能运用三角函数最值解决实际问题;2.求三角函数值域与最值的常用方法:(1)化为一个角的同名三角函数形式,利用函数的有界性或单调性求解;(2)化为一个角的同名三角函数形式的一元二次式,利用配方法或图像法求解;(3)借助直线的斜率的关系用数形结合求解;(4)换元法.【基础练习】1.函数在区间上的最小值为1.2.函数的最大值等于.3.函数且的值域是___________________.4.当时,函数的最小值为4.【范例解析】例1.(1)已知,求的最大值与最小值.(2)求函数的最大值.分析:可化为二次函数求最值问题.解

2、:(1)由已知得:,,则.,当时,有最小值;当时,有最小值.(2)设,则,则,当时,有最大值为.点评:第(1)小题利用消元法,第(2)小题利用换元法最终都转化为二次函数求最值问题;但要注意变量的取值范围.例2.求函数的最小值.分析:利用函数的有界性求解.解法一:原式可化为,得,即,故,解得或(舍),所以的最小值为.解法二:表示的是点与连线的斜率,其中点B在左半圆上,由图像知,当AB与半圆相切时,最小,此时,所以的最小值为.点评:解法一利用三角函数的有界性求解;解法二从结构出发利用斜率公式,结合图像求解.例3.已知函数,.(I)求的最大值和最小值;(II)若不等式在上恒成立,求实数的取值

3、范围.分析:观察角,单角二次型,降次整理为形式.解:(Ⅰ).又,,即,.(Ⅱ),,且,,即的取值范围是.点评:第(Ⅱ)问属于恒成立问题,可以先去绝对值,利用参数分离转化为求最值问题.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.【反馈演练】1.函数的最小值等于____-1_______.2.当时,函数的最小值是______4_______.3.函数的最大值为_______,最小值为________.4.函数的值域为.5.已知函数在区间上的最小值是,则的最小值等于_________.6.已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在区间上

4、的最小值和最大值.解:(Ⅰ).因此,函数的最小正周期为.(Ⅱ)因为在区间上为增函数,在区间上为减函数,又,,,故函数在区间上的最大值为,最小值为.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。