欢迎来到天天文库
浏览记录
ID:33718813
大小:752.79 KB
页数:8页
时间:2019-02-28
《厦门市2018-2019学年度第一学期高三质检理科数学参考答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、厦门市2018—2019学年度第一学期高三年级质量检测数学(理科)参考答案一、选择题:本题共12小题,每小题5分,共60分.1—5:AABCA6—10:BDDAC11-12:CB11.解析:设圆锥的高为h,ACBD,相交于点M,AMB,则h0,2,22rh4,11122SACBDsinACBD2r2r,ABCD222当且仅当,2ACBDr时,SABCD取到最大值,21222223则VShrh44hhhh,PABCDABCD33333223令fhh4h,则fh34h,令fh0,解得h,32323所以fh在0,上单调递减,在,2上单调递增,3323
2、163323所以hhmin,则四棱锥PABCD的体积的最大值为.3927226所以当四棱锥PABCD体积最大时,rh4.312.解析:设AC和BD交于点E,ACD和ABC的高分别为h,h,12∵ACD的面积是ABC面积的2倍,∴hh2DE2EB,2121∴DE2EB,即CECD2CBCE,∴CECBCD,33又CAa32CBaCD,nn121由A、C、E三点共线,设CACECBCD,332Aa3,n1D3由平面向量基本定理得:,1an2h1h32E∴aa322,即aa121,nn1nn1B∴数列a1是以a12为首项,以2为公比的等比数列,n1n
3、n1n∴an1222,即an21,C所以,a532133.二、填空题:本题共4小题,每小题5分,共20分.52813.14.13015.16.1ea53x16.因为当x≥0时,fxa1logx1a1,所以f00,又因为fx为偶函a数,所以fx恰有三个零点等价于fx在0+,恰有一个零点,xx令fx0,得ax1=log1,所以gxa1与函数hxlogx1的图象恰有aa一个交点,因为函数ygx与函数yhx的图象关于yx对称,x解法一:由于a1,当gxa1的图象与直线yx相切时,设切点为xy,,则00高三数学(理科)参考答案第1页(共8页)xx1aa0
4、ln1且ax01,所以xalnln,xa1lnln1,设taln,则000lnattlnt1,设xxxlnx,则'xxln,所以x在0,1单调递增,在1,单调递减,又因为11,所以taln1,ae,由图可知,a的取值范围为1ea.x解法二:如图,由于a1,函数gxa1的图象与直线yx有一个公共点为0,0,x当函数gxa1的图象与直线yx切于原点时,lna1,ae,由图可知,a的取值范围为1ea.三、解答题:本题共6小题,共70分.17.本题考查正弦定理、余弦定理、三角恒等变换等基础知识;考查推理论证能力、运算求解能力等;考查函数与方程思想、化归
5、与转化思想等.满分12分.1222解:(1)∵SabsinC,abc43S,2222∴abc23absinC,······························································1分222在ABC中,由余弦定理,得abc2abcosC,∴cosCC3sin,·········································································4分3∴tanC,3∵C0,,∴C.···························
6、··········································6分6abc(2)由正弦定理,得4,·············································7分sinAsinBsinC所以3ba43sinBA4sin543sin(AA)4sin623cosAA2sin4sin(A),····························································10分357因为A(0,),所以A(,),·························
7、·····················11分6336所以3ba(2,4],即3ba的取值范围为(2,4].····························12分18.本题考查等比数列的定义、递推数列、数列求和等基础知识;考查推理论证能力、运算求解能力、创新意识等;考查分类与整合思想、化归与转化思想等.满分12分.高三数学(理科)参考答案第2页(共8页)解:(1)当n1时,Sa2a12,a3,·················································1分1111当n2时,S22an,①nnS2a
8、(n1)2,②············································2分nn11由①-②得,a2a2an(n1),n
此文档下载收益归作者所有