2015年福建南平建瓯第二中学高一下学期人教A版数学期末复习试卷

2015年福建南平建瓯第二中学高一下学期人教A版数学期末复习试卷

ID:31880302

大小:64.59 KB

页数:5页

时间:2019-01-23

2015年福建南平建瓯第二中学高一下学期人教A版数学期末复习试卷_第1页
2015年福建南平建瓯第二中学高一下学期人教A版数学期末复习试卷_第2页
2015年福建南平建瓯第二中学高一下学期人教A版数学期末复习试卷_第3页
2015年福建南平建瓯第二中学高一下学期人教A版数学期末复习试卷_第4页
2015年福建南平建瓯第二中学高一下学期人教A版数学期末复习试卷_第5页
资源描述:

《2015年福建南平建瓯第二中学高一下学期人教A版数学期末复习试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2015年福建南平建瓯第二中学高一下学期人教A版数学期末复习试卷一、选择题(共9小题;共45分)1.sin240∘的值为  A.32B.12C.−12D.−322.如图,正六边形ABCDEF中,BA+CD+EF=  A.0B.BEC.ADD.CF3.在△ABC中,∠A=π3,AB=2,且△ABC的面积为32,则边AC的长为  A.1B.3C.2D.14.函数y=sin2x+π4的图象可由函数y=sin2x的图象  A.向左平移π8个单位长度而得到B.向右平移π8个单位长度而得到C.向左平移π4个单

2、位长度而得到D.向右平移π4个单位长度而得到5.若函数fx=cos2x−12x∈R,则fx是  A.最小正周期为π2的奇函数B.最小正周期为π的奇函数C.最小正周期为π的偶函数D.最小正周期为2π的偶函数6.sin45∘⋅cos15∘+cos225∘⋅sin15∘的值为  A.−32B.−12C.12D.327.已知函数fx=sin2x+φ0<φ<π2的图象的一个对称中心为3π8,0,则函数fx的单调递减区间是  A.2kπ−3π8,2kπ+π8k∈ZB.2kπ+π8,2kπ+5π8k∈ZC.kπ

3、−3π8,kπ+π8k∈ZD.kπ+π8,kπ+5π8k∈Z8.函数fx=Asinωx+φ的部分图象如下图所示,则此函数的解析式为  第5页(共5页)A.fx=2sinπ3x−π3B.fx=2sinπ6x−1C.fx=2sinx−π3D.fx=2sinπ6x−π69.若tanα=3,则sin2αcos2α的值等于  A.2B.3C.4D.6二、填空题(共1小题;共5分)10.已知平面向量a,b满足:a=1,−2,b=25,a⋅b=−10,则向量b的坐标是______.三、选择题(共2小题;共10分

4、)11.设函数fx=2sin2x+φ−π60<φ<π,x∈R为偶函数,则φ等于  A.π6B.π3C.2π3D.5π612.已知函数fx=sinx+cosx−sinx−cosx2,则函数fx的值域为  A.−1,1B.−1,22C.−22,1D.−22,22四、填空题(共6小题;共30分)13.已知向量a,b,且∣b∣=2,b⋅2a−b=0,则∣tb+1−2ta∣t∈R的最小值为______.14.已知α∈π2,π,sinα=45,则tanα=______.15.在锐角△ABC中,角A,B所对的边

5、长分别为a,b,若2asinB=3b,则角A等于______.16.非零向量a,b,向量a+b与向量a的夹角为π6,向量a+b与向量b的夹角为π4,则∣a∣∣b∣等于______.17.在锐角△ABC中,角A,B,C所对的边分别为a,b,c.若b=1,A=2B,则a的范围为______.18.函数fx=sin2x+23cos2x−3,函数gx=mcos2x−π6−2m+3m>0,若对所有的x2∈0,π4总存在x1∈0,π4,使得fx1=gx2成立,则实数m的取值范围是______.五、解答题(共1

6、小题;共13分)19.已知函数fx=−3sin2x+sinxcosx.第5页(共5页)(1)求fπ6的值;(2)设α∈0,π,fα2=14−32,求sinα的值.六、选择题(共1小题;共5分)20.平面向量a=1,x,b=−2,3,若a∥b,则实数x的值为  A.−6B.23C.−32D.0七、解答题(共1小题;共13分)21.△ABC中,三个内角A,B,C所对的边分别为a,b,c,a2+c2=b2+ac.(1)求角B的大小;(2)若A=5π12,b=2,求边c的大小;(3)若a+c=4,求b的最

7、小值.第5页(共5页)答案第一部分1.D2.D3.A4.A5.C6.C7.D8.A9.D第二部分10.−2,4第三部分11.C12.B第四部分13.114.−4315.π316.217.2,318.1,43第五部分19.(1)因为sinπ6=12,cosπ6=32,代入得fπ6=0.      (2)fx=32cos2x−32+12sin2x.所以fα2=32cosα+12sinα−32=14−32,又因为cos2α=1−sin2α,所以16sin2α−4sinα−11=0,解得sinα=1±35

8、8.因为α∈0,π,所以sinα>0,故sinα=1+358.第六部分20.C第七部分21.(1)cosB=a2+c2−b22ac=12,则B=π3.第5页(共5页)      (2)C=π−A−B=π4,bsinB=csinC,所以c=2×2232=263.      (3)b2=a2+c2−ac=a2+4−a2−a4−a=3a2−12a+16=3a−22+4≥4,则b的最小值为2.第5页(共5页)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。