欢迎来到天天文库
浏览记录
ID:30599637
大小:105.00 KB
页数:4页
时间:2019-01-01
《“勾股定理”检测题》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、“勾股定理”检测题 一、选择题 1.下列各组数为勾股数的是() A.6,8,11B.3,5,7C.5,12,13D.9,12,16 2.等腰三角形底边上的高为8,周长为32,则三角形的面积为() A.56B.48C.40D.32 3.如果直角三角形的两直角边长分别为n2-1,2n(n>1),那么它的斜边长是() A.2nB.n+1C.n2-1D.n2+1 4.已知,如图1,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为() A.6cm2B.8cm2
2、C.10cm2D.12cm2 5.已知,如图2,一艘轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距() A.25海里B.30海里 C.35海里D.40海里 6.如图3,将一根长13厘米的筷子,置于底面直径为3厘米、高为4厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为()4 A.6B.8 C.9D.10 二、填空题 7.在Rt△ABC中,∠C=90°,①若a=6,b=8,则c=___________;②若a=15,c=25,
3、则b=___________;③若a∶b=3∶4,c=10则SRt△ABC=________。 8.如图4,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积之和为___________cm2。 9.已知x、y为正数,且│x2-2│+(y2-3)2=0,如果以x、y的值为直角边长作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为___________。 10.如图5,在一棵树的10米高处B有两只猴子,一只猴子爬下树走到离树20米处的池塘A处。另一只爬到
4、树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高____________米。 11.如图6,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=______。 三、解答题(每题13分) 12.如图7,在高为3米、斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,每平方米地毯需30元,那么这块地毯需要花多少元? ■4 13.如图8,在四边形ABCD中,已知AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形A
5、BCD的面积。 14.如图9,在4×3正方形网格中从A点出发的四条线段AB、AC、AD、AE,它的另一个端点B、D、C、E均在格点上(正方形网格的交点)。 (1)若每个正方形的边长都是1,分别求出AB、AC、AD、AE长度;(结果可以保留根号) (2)在AB、AC、AD、AE四条线段中,是否存在三条线段,它们能构成直角三角形?如果存在,请指出是哪三条线段,并说明理由。 参考答案 一、选择题 1.C2.B3.D4.A5.D6.B 二、填空题 7.①10;②20;③24;8.49;9.5;10.15 11.■。解:因
6、为△ABC为等边三角形, 所以∠ABC=∠ACB=60°,AB=BC。 因为BD为中线,所以BD也为角平分线,所以∠DBC=■∠ABC=30°。 因为CD=CE,所以∠E=∠CDE。 因为∠E+∠CDE=∠ACB, 所以∠E=30°=∠DBC,所以BD=DE。 因为BD是AC中线,所以AD=DC=1。 因为△ABC是等边三角形,所以BC=AC=1+1=2,BD⊥AC,4 在Rt△BDC中,由勾股定理得:BD=■=■, 即DE=BD=■。 三、解答题 12.解:在Rt△ABC中,AC2+BC2=AB2,所以AC2=
7、AB2-BC2=52-32=25-9=16。所以AC=4(米)。 所以地毯长度为AC+BC=4+3=7(米)。所以地毯总面积为7×2=14(平方米),需花30×14=420(元)。 13.解:连接BD,因为∠A=90°,所以BD=■=5。 又因为52+122=132,所以△BCD是直角三角形。 所以S四边形ABCD=■×3×4+■×5×12=36。 14.(1)由勾股定理,得AB=■=■,AC=■=■,AD=■=2■,AE=■=2■。(2)AB,AC,AD可构成直角三角形。理由:因为AD2+AB2=AC2,由勾股定理逆定理可
8、得,以AB,AC,AD为边长可构成直角三角形。4
此文档下载收益归作者所有