欢迎来到天天文库
浏览记录
ID:29965170
大小:813.00 KB
页数:11页
时间:2018-12-25
《定积分的概念和性质(》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第五章定积分Chapter5DefiniteIntegrals5.1定积分的概念和性质(ConceptofDefiniteIntegralanditsProperties)一、定积分问题举例(ExamplesofDefiniteIntegral)设在区间上非负、连续,由,,以及曲线所围成的图形称为曲边梯形,其中曲线弧称为曲边。Letbecontinuousandnonnegativeontheclosedinterval.Thentheregionboundedbythegraphof,the-axis,theverticallines,andiscall
2、edthetrapezoidwithcurvededge.黎曼和的定义(DefinitionofRiemannSum)设是定义在闭区间上的函数,是的任意一个分割,,其中是第个小区间的长度,是第个小区间的任意一点,那么和,称为黎曼和。Letbedefinedontheclosedinterval,andletbeanarbitrarypartitionof,,whereisthewidthofthethsubinterval.Ifisanypointinthethsubinterval,thenthesum,,IscalledaRiemannsumforth
3、epartition.二、定积分的定义(DefinitionofDefiniteIntegral)定义定积分(DefiniteIntegral)设函数在区间上有界,在中任意插入若干个分点,把区间分成个小区间:各个小区间的长度依次为,,…,。在每个小区间上任取一点,作函数与小区间长度的乘积(),并作出和。记,如果不论对怎样分法,也不论在小区间上点怎样取法,只要当时,和总趋于确定的极限,这时我们称这个极限为函数在区间上的定积分(简称积分),记作,即==,其中叫做被积函数,叫做被积表达式,叫做积分变量,叫做积分下限,叫做积分上限,叫做积分区间。Letbeafun
4、ctionthatisdefinedontheclosedinterval.Considerapartitionoftheintervalintosubinterval(notnecessarilyofequallength)bymeansofpointsandlet.Oneachsubinterval,pickanarbitrarypoint(whichmaybeanendpoint);wecallitasamplepointfortheithsubinterval.WecallthesumaRiemannsumforcorrespondingtothe
5、partition.Ifexists,wesayisintegrableon,where.Moreover,,calleddefiniteintegral(orRiemannIntegral)offromto,isgivenby=.Theequality=meansthat,correspondingtoeach>0,thereisasuchthat6、tofintegral,theupperlimitofintegral,andtheintegralinterval.定理1可积性定理(IntegrabilityTheorem)设在区间上连续,则在上可积。Theorem1Ifafunctioniscontinuousontheclosedinterval,itisintegrableon.定理2可积性定理(IntegrabilityTheorem)设在区间上有界,且只有有限个间断点,则在区间上可积。Theorem2Ifisboundedonandifitiscontinuousthereexceptata7、finitenumberofpoints,thenisintegrableon.三.定积分的性质(PropertiesofDefiniteIntegrals)两个特殊的定积分(1)如果在点有意义,则;(2)如果在上可积,则。TwoSpecialDefiniteIntegrals(1)Ifisdefinedat.Then.(2)Ifisintegrableon.Then.定积分的线性性(LinearityoftheDefiniteIntegral)设函数和在上都可积,是常数,则和+都可积,并且(1)=;(2)=+;andconsequently,(3)=-.8、Supposethatandareintegrableonandi
6、tofintegral,theupperlimitofintegral,andtheintegralinterval.定理1可积性定理(IntegrabilityTheorem)设在区间上连续,则在上可积。Theorem1Ifafunctioniscontinuousontheclosedinterval,itisintegrableon.定理2可积性定理(IntegrabilityTheorem)设在区间上有界,且只有有限个间断点,则在区间上可积。Theorem2Ifisboundedonandifitiscontinuousthereexceptata
7、finitenumberofpoints,thenisintegrableon.三.定积分的性质(PropertiesofDefiniteIntegrals)两个特殊的定积分(1)如果在点有意义,则;(2)如果在上可积,则。TwoSpecialDefiniteIntegrals(1)Ifisdefinedat.Then.(2)Ifisintegrableon.Then.定积分的线性性(LinearityoftheDefiniteIntegral)设函数和在上都可积,是常数,则和+都可积,并且(1)=;(2)=+;andconsequently,(3)=-.
8、Supposethatandareintegrableonandi
此文档下载收益归作者所有