欢迎来到天天文库
浏览记录
ID:29953748
大小:133.00 KB
页数:7页
时间:2018-12-25
《2014高考数学 基础+方法全解 第11讲 “宝刀未老”的函数应用性问题(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2014高考数学基础+方法全解第11讲“宝刀未老”的函数应用性问题(含解析)考纲要求:1.了解指数函数、对数函数以及幂函数的变化特征.2.能利用给定的函数模型解决简单的实际问题.基础知识回顾:1.常见的函数模型及性质(1)几类函数模型①一次函数模型:y=kx+b(k≠0).②二次函数模型:y=ax2+bx+c(a≠0).③指数函数型模型:y=abx+c(b>0,b≠1).④对数函数型模型:y=mlogax+n(a>0,a≠1).⑤幂函数型模型:y=axn+b.(2)三种函数模型的性质函数性质 y=ax(a>1)y=logax(a>1)y=xn(n>0)在
2、(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有logax<xn<ax【注】三种增长型函数之间增长速度的比较(1)指数函数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+∞),无论n比a大多少,尽管在x的一定范围内ax会小于xn,但由于ax的增长快于xn的增长,因而总存在一个x0,当x>x0时有ax>xn(2)对数函数y=logax(a>1)与幂函数y=xn(n>0)对数函数y=logax(
3、a>1)的增长速度,不论a与n值的大小如何总会慢于y=xn的增长速度,因而在定义域内总存在一个实数x0,使x>x0时有logaxx0时有ax>xn>logax2.解决函数应用问题重点解决以下问题(1)阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等
4、关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用;(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.应用举例:【2013上海理】(6分+8分)甲厂以x千克/小时的速度运输生产某种产品(生产条件要求),每小时可获得利润是元.(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.变式训练:【变式1】为了在夏季降温和冬季供暖
5、时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【变式2】某单位用2160万元购得一块空地,计划在该块地上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则
6、每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)方法、规律归纳:一个防范特别关注实际问题的自变量的取值范围,合理确定函数的定义域.四个步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质;(2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题;(3)解模:用数学知识和方法解决转化出的数学问题;(4)还原:回到题目本身,检验结果的实际意义,给出结论.实战演练:1、某村计划建造一个室
7、内面积为800m2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?2、某工厂改进了设备,在两年内生产的月平均增长率都是m,则这两年内第二年三月份的产值比第一年三月份的产值的平均增长率是多少?【正解】设第一年三月份的产值为a,则第四个月的产值为a(1+m),五月份的产值为a(1+m)2,从此类推,则第二年的三月份是第一年三月份后的第12个月,故第二年的三月份的产值是a(1+m)12,又由增长率的概念知,这两年的第二年的三月份的产值比第一年的三月份的
8、产值的增长率为.3、为了预防甲型H1N1流感,东莞市常平中学对教室
此文档下载收益归作者所有