欢迎来到天天文库
浏览记录
ID:29858640
大小:507.56 KB
页数:7页
时间:2018-12-24
《八年级数学下册 19.2《一次函数》一次函数的图象和性质学案2 (新版)新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一次函数的图象与性质(提高)【学习目标】1.理解一次函数的概念,理解一次函数的图象与正比例函数的图象之间的关系;2.能正确画出一次函数的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3.对分段函数有初步认识,能运用所学的函数知识解决实际问题.【要点梳理】要点一、一次函数的定义一般地,形如(,是常数,≠0)的函数,叫做一次函数.要点诠释:当=0时,即,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数,的要求,一次函数也被称为线性函数.要点二
2、、一次函数的图象与性质1.函数(、为常数,且≠0)的图象是一条直线;当>0时,直线是由直线向上平移个单位长度得到的;当<0时,直线是由直线向下平移
3、
4、个单位长度得到的.2.一次函数(、为常数,且≠0)的图象与性质:3.、对一次函数的图象和性质的影响:决定直线从左向右的趋势,决定它与轴交点的位置,、一起决定直线经过的象限.4.两条直线:和:的位置关系可由其系数确定:(1)与相交;(2),且与平行;【高清课堂:391659一次函数的图象和性质,待定系数法求函数的解析式】要点三、待定系数法求一次函数解析式 一次函数(,是常数,≠0)中有两个待定系数,,需要两
5、个独立条件确定两个关于,的方程,这两个条件通常为两个点或两对,的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数中有和两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相
6、应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.【典型例题】类型一、待定系数法求函数的解析式1、(1)已知直线,与直线平行,且与轴的交点是(0,),则直线解析式为___________________.(2)若直线与平行,且同一横坐标在两条直线上对应的点的纵坐标相差1个单位长度,则直线解析式为__________________.【思路点拨】(1)一次函数的图象与正比例函数的图象平行,则比例系数相同,再找一个条件求即可,而题中给了图象过(0,)点,可用待定系数法求.(2)题同样比例系数相同,注意同一横坐标在两条直线上对应的点的纵坐标
7、相差一个单位长度有两种情况,都要考虑到.【答案】(1);(2)或.【解析】(1)因为所求直线与平行,所以,将(0,-2)代入,解得=-2,所以.(2)由题意得=3,假设点(1,4)在上面,那么点(1,5)或(1,3)在直线上,解得=2或=0.所求直线为或.【总结升华】互相平行的直线值相同.举一反三:【高清课堂:391659一次函数的图象和性质,例2】【变式1】一次函数交轴于点A(0,3),与两轴围成的三角形面积等于6,求一次函数解析式.【答案】解:设一次函数的解析式为.当过时,;当过时,;所以,一次函数的解析式为或.【高清课堂:391659一次函数的图
8、象和性质,例3】【变式2】在平面直角坐标系中,已知两点,,在轴上求作一点P,使AP+BP最短,并求出点P的坐标.【答案】解:作点A关于轴的对称点为,连接,与轴交于点P,点P即为所求.设直线的解析式为,直线过,的解析式为:,它与轴交于P(0,1).类型二、一次函数图象的应用2、李明骑自行车去上学途中,经过先上坡后下坡的一条路段,在这段路上所走的路程(米)与时间(分钟)之间的函数关系如图所示.根据图象,解答下列问题:(1)求李明上坡时所走的路程(米)与时间(分钟)之间的函数关系式和下坡时所走的路程(米)与时间(分钟)之间的函数关系式;(2)若李明放学后按原
9、路返回,且往返过程中,上坡的速度相同,下坡的速度也相同,问李明返回时走这段路所用的时间为多少分钟?【思路点拨】由图象可知,上坡时,路程是时间的正比例函数,根据函数图象经过点(6,900),可以确定函数解析式;下坡时,路程是时间的一次函数,根据函数图象经过点(6,900),(10,2100),可以求出函数解析式.【答案与解析】解:(1)设,由已知图象经过点(6,900),得900=6.解得=150.所以=150(0≤≤6).设,由已知图象经过点(6,900),(10,2100),得解得所以=300-900(610、100-900)÷(900÷6)+900÷[(2100-900)÷(10-6)]=8+3=11
10、100-900)÷(900÷6)+900÷[(2100-900)÷(10-6)]=8+3=11
此文档下载收益归作者所有