资源描述:
《《高中数列专题》word版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、江苏省海安高级中学高考数学二轮复习专题四数列方法技巧1.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证为同一常数。(2)通项公式法:①若 = +(n-1)d= +(n-k)d,则为等差数列;②若 ,则为等比数列。(3)中项公式法:验证中项公式成立。2.在等差数列中,有关的最值问题——常用邻项变号法求解: (1)当>0,d<0时,满足的项数m使得取最大值.(2)当<0,d>0时,满足的项数m使得取最小值。在解含绝对值的数列最值问题时,注意转化思想的应用。3.数列求和的常用方法:公式法、
2、裂项相消法、错位相减法、倒序相加法等。注意事项1.证明数列是等差或等比数列常用定义,即通过证明或而得。2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。3.注意与之间关系的转化。如:=,=.4.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.【问题1】等差、等比数列的项与和特征问题54例1.数列的前项和记为(Ⅰ)求的通项公式;(Ⅱ)等差数列的各
3、项为正,其前项和为,且,又成等比数列,求本小题主要考察等差数列、等比数列的基础知识,以及推理能力与运算能力。解:(Ⅰ)由可得,两式相减得又∴故是首项为,公比为得等比数列∴(Ⅱ)设的公比为由得,可得,可得故可设又由题意可得解得∵等差数列的各项为正,∴∴∴例2.设数列的前项和为,且对任意正整数,。(1)求数列的通项公式?(2)设数列的前项和为,对数列,从第几项起?.解(1)∵an+Sn=4096,∴a1+S1=4096,a1=2048.当n≥2时,an=Sn-Sn-1=(4096-an)-(4096-an-1)=an-1-an∴=
4、an=2048()n-1.(2)∵log2an=log2[2048()n-1]=12-n,∴Tn=(-n2+23n).由Tn<-509,解得n>,而n是正整数,于是,n≥46.∴从第46项起Tn<-509.【问题2】等差、等比数列的判定问题.54例3.已知有穷数列共有2项(整数≥2),首项=2.设该数列的前项和为,且=+2(=1,2,┅,2-1),其中常数>1.(1)求证:数列是等比数列;(2)若=2,数列满足=(=1,2,┅,2),求数列的通项公式;(3)若(2)中的数列满足不等式
5、-
6、+
7、-
8、+┅+
9、-
10、+
11、-
12、≤4,求的
13、值.(1)[证明]当n=1时,a2=2a,则=a;2≤n≤2k-1时,an+1=(a-1)Sn+2,an=(a-1)Sn-1+2,an+1-an=(a-1)an,∴=a,∴数列{an}是等比数列.(2)解:由(1)得an=2a,∴a1a2…an=2a=2a=2,bn=(n=1,2,…,2k).(3)设bn≤,解得n≤k+,又n是正整数,于是当n≤k时,bn<;当n≥k+1时,bn>.原式=(-b1)+(-b2)+…+(-bk)+(bk+1-)+…+(b2k-)=(bk+1+…+b2k)-(b1+…+bk)==.当≤4,得k2-
14、8k+4≤0,4-2≤k≤4+2,又k≥2,∴当k=2,3,4,5,6,7时,原不等式成立.例4。已知数列中,是其前项和,并且,⑴设数列,求证:数列是等比数列;⑵设数列,求证:数列是等差数列;⑶求数列的通项公式及前54项和。分析:由于{b}和{c}中的项都和{a}中的项有关,{a}中又有S=4a+2,可由S-S作切入点探索解题的途径.解:(1)由S=4a,S=4a+2,两式相减,得S-S=4(a-a),即a=4a-4a.(根据b的构造,如何把该式表示成b与b的关系是证明的关键,注意加强恒等变形能力的训练)a-2a=2(a-2a
15、),又b=a-2a,所以b=2b ①已知S=4a+2,a=1,a+a=4a+2,解得a=5,b=a-2a=3 ②由①和②得,数列{b}是首项为3,公比为2的等比数列,故b=3·2.当n≥2时,S=4a+2=2(3n-4)+2;当n=1时,S=a=1也适合上式.综上可知,所求的求和公式为S=2(3n-4)+2.说明:1.本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前项和。解决本题的关键在于由条件得出递推公式。2.解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的
16、过程中适时应用.【问题3】函数与数列的综合题数列是一特殊的函数,其定义域为正整数集,且是自变量从小到大变化时函数值的序列。注意深刻理解函数性质对数列的影响,分析题目特征,探寻解题切入点.54例5已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。