欢迎来到天天文库
浏览记录
ID:29661676
大小:177.50 KB
页数:5页
时间:2018-12-21
《(秋)七年级数学上册 1.3.1 有理数的加法教学设计 新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.3.1有理数的加法教学任务分析教学目标知识技能了解有理数加法的意义;理解有理数加法的法则;能根据有理数加法法则熟练地进行有理数加法运算.能运用加法运算律简化加法运算.数学思考有理数加法法则的导出及运用过程,训练学生独立分析问题的能力及口头表达的能力.解决问题理解加法运算律在加法运算中的作用,适当进行推理训练.情感态度渗透数形结合地思想,培养学生运用数形结合地方法解决问题能力;让学生感知数学知识来源于生活,培养学生用联系发展的观点、看待事物,逐步树立辨证唯物主义观点.重点有理数加法法则的理解和运用,
2、如何运用加法运算律简化运算.难点异号两数相加的加法法则,灵活运用运算率.教学流程安排活动流程图活动内容和目的问题1走路问题问题2分析两个有理数相加的情况问题3分别对各种情况进行分析问题4计算问题5解决下列问题问题6计算小结作业创设情景,引入本节要研究的问题.探索新知,主体探究,导出法则.培养学生分类的思想以及探索精神.巩固法则.探索运算律.应用迁移、巩固提高.巩固新知.教学过程设计一、创设情景,引入本节要研究的问题问题1:“我从学校出发沿某条路向东走米,再继续向东走米,那么两次我一共向东走了多少米?”
3、学生活动设计:这里都表示有理数,这显然是求两数之和的问题,于是引出要研究的有理数的加法问题.二、探索新知,主体探究,导出法则问题2:既然均是有理数,它们可能是正数,也可能是负数或者零.同学思考一下:的符号可能有几种情况?学生活动设计:学生根据所学过的数的情况,容易想到有以下几种情况:同为正数、同为负数、一个正数一个负数、加数中有一个是0;教师活动设计:下面我们就来研究这几种情况下有理数的加法问题.在研究之前,首先提醒同学注意正确理解“向东走米”的含义.(用课件演示)为了研究的方便起见,用数轴来帮助我们
4、,并设向东为正.问题3:请你分别把a、b赋予不同情况的有理数,然后进行加法运算,你会有什么样的结论?你能发现有理数的加法法则吗?学生活动设计:同桌小组合作,主体探究,自主归纳;学生经过思考,可能会有以下结果(若没有讨论完整教师作适当提示).情况1.若同为正数:不妨设,用数轴表示如图:(有同学可能会说,这么简单不用数轴也能算出来.这时要告诉它,这里用数轴的目的并不是要结果,而是要体会过程,以便在其他的情况下为用数轴解决问题)显然一共走了35米,写出算式就是:(+20)+(+15)=+35oBA20153
5、5情况2.若同为负数:不妨设,这时应怎样用数轴表示?(学生画数轴)这时问题的实际意义是:我向西走了20米后,再向西走了15米,我实际向东走了-35米.即:情况3.若一正一负:不妨设.请同学们用数轴表示出来,并解说这时问题的实际意义.(如图)(实际意义就是我向东走了20米以后,接着我又向西走了15米.我实际是向东走了5米)即:情况4.若呢?这时问题的实际意义是什么?怎样用数轴来表示?(同学操作)结果:情况5.若时,这时问题的实际意义是什么?结果:情况6.若时,这时问题的实际意义又是什么?结果:情况7.若
6、时,这时问题的实际意义是什么?结果:情况8.若时,这时问题的实际意义是什么?结果:综合以上几种情况,得到8个式子,我们将这8个式子分成同号、异号、有零的三种情况统计如下:(1)同号的情况:;.(2)异号的情况:;;;.(3)有零的情况:;.同学归纳有理数的加法法则,若归纳不完整,则有其他同学进行补充,直到法则完善化,必要时教师进行点拨:有理数加法法则1、同号两数相加,取相同的符号,并把绝对值相加;2、异号两数相加时:(1)若绝对值不相等,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(2)
7、若绝对值相等,和为0.也就是相反数的和为0;3、一个数与0的和仍得这个数.巩固练习:计算:(先口述运用法则的过程,然后说出计算结果)从计算的过程看,你有什么发现?(1);(2);(3);(4);(5);(6);(7);(8).归纳:进行加法运算时首先判断关系、其次确定符号、最后计算绝对值.三、法则应用、主体反馈问题4:计算下列各题:(1);(2);(3);(4);(5).学生活动设计:学生独立完成,在完成的过程中可以让学生进行板演,然后再共同分析过程的正确性,在分析过程的正确性时要充分发挥学生的主体性
8、,让学生充分发表自己的看法,最后得到统一的正确的结论.四、体验探索、发现运算率问题5:解决下列问题:体验1:请你任意取两个有理数(至少有一个是负数),填入下列□和○中,比较它们的运算结果,你能发现什么?□+○○+□学生活动设计:学生独立完成这项任务,自己寻找自己认为合适的有理数,经过运算,可以发现:对任意的两个有理数都有□+○=○+□,即:小学里学的加法交换律在有理数范围内仍成立体验2:请你任意取三个有理数(至少有一个是负数),填入下列□、○和◇中,比较
此文档下载收益归作者所有