刘觉平群论期中考试及答案_1

刘觉平群论期中考试及答案_1

ID:28946668

大小:354.58 KB

页数:4页

时间:2018-12-15

刘觉平群论期中考试及答案_1_第1页
刘觉平群论期中考试及答案_1_第2页
刘觉平群论期中考试及答案_1_第3页
刘觉平群论期中考试及答案_1_第4页
资源描述:

《刘觉平群论期中考试及答案_1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、ThemiddleexaminationinGroupTheorySchoolofPhysicsandTechnology,WuhanUniversity,Wintersemester,2012.1.(1)Whatistheorderofanelementinthegroup?(2)ShowthatagroupmustbeanAbeliangroupiftheorderofanyelementinthegroup,exceptfortheidentity,istwo.Solution:(2)Becauseforan

2、ygroupelement,wehaveorInparticularfor,wehave2.(1)Whatisthesubgroupofagroup?(2)Whatisthenon-trivialsubgroupofagroup?(2)Proveagroupcannotbeexpressedastheunionofitstwonon-trivialsubgroups.Proof:(3)Supposethatandaretwonon-trivialsubgroupsofagroup,and.Thenitmustlea

3、dsandthustheremustbe,withand(1)and(2)sothatThereforeorHowever,if,thenthisleadstoacontradictionwith(2).Similarly,,itleadstoacontradictionwith(1)aswell.Altogether,weconcludethat.3.(1)Whatistheconceptforahomomorphismbetweentwogroups?(2)Supposethatisahomomorphismf

4、romonto.Provethat,;,whereandaretheunitsofthegroupsand.(3)Provethatthekernelofthehomomorphism,i.e.,isasubgroupof.Solution:(2)Fromtheabovehomomorphismand,,forwehave,forand,forTheseimplythatand(3)If,then,ThereforenamelyEnd.4.SupposeagroupGactingonaset.(1)Givenany

5、pointintheset,provethatthesubsetofgivenbyisasubgroupof,calledtheisotropygroupof.(2)Fortwodifferentpointsandinthesameorbitundertheactionof.ProvethatProof:(1)WewanttoprovethatthesetisreallyasubgroupofG.Atfirst,itisnon-emptybecausewhichimpliesthatFurther,itisclea

6、rthatif,i.e.,then,andif,i.e.and,then,.(2)5.(1)SupposethatagroupGactontwodifferentsetsM1andM2.WhatistheconceptofaG-morphismfromM1toM2?(2)LetagroupGactsonanarbitraryset,andactsonthesetbyconjugationShowthatshowthat(3)Undertheconditionsgivenin(2),provethatthemappi

7、ngffromto:isaG-morphism.Solution:(1)LetagroupGactsontwodifferentsetsM1andM2.GivenamappingformM1toM2:(1)whichissaidtobeequivalentwithrespecttotheactionsofG,orfisaG-morphismif(2)i.e.GG(3)Inotherwords,itdoesnotmatterwhetherwefirstapplyagroupelementandthenthemappi

8、ngf,orfirstapplyfandthenthegroupelement(4)BecauseofthearbitrarinessofthechoiceofthepointinandtheelementainG.(1)Supposethat,thethereareexistsuchthatandThusbecauseof.(3)Bydefinition,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。