欢迎来到天天文库
浏览记录
ID:55794463
大小:230.00 KB
页数:3页
时间:2020-06-02
《刘觉平群论第二次作业.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、Exercise2inGroupTheoryPleasegivetheelectronicfiles(WORD2003document)ofyourhomeworkintimetothecorrespondingpersonbeingresponsibleforevaluating.DeadlineforsendingyourhomeworkthroughemailisSunday24:00oftheweekwhenthehomeworkisgiven.Problem1.ShowthatagroupmustbeanAbeliangroupiftheorderofanye
2、lementinthegroup,exceptfortheidentity,is2.证明:对于任意群都有元素令即又有得故群是阿贝尔群Problem2.(Lorentzgroup)ProvethatinMinkowskispace-timewherethefourcoordinatesofaneventisexpressedas,alltheLorentztansformationsalongwiththeX-axis(namelyallboostsalongwithX-axis)oftheformwhere,,formagroup.证明:取取(1)封闭性:取,则,显然且
3、,所以得证。(2)结合律:由(1)中结论,易知有(3)当时即有(4)当时综上所述,该变换构成一个群。Problem3.LetGbeafinitecyclicgroup,andletnbeapositiveintegerwhichdividestheorderofG,.ProvethatGhasacyclicsubgroupofGofordern,.证明:取为生成元,生成n阶循环群,必为的子群,故是的n阶循环子群Problem4.Let.Letx,ybethepermutationsinwhicharegivenby,,andletKbethesubgroupof.Sho
4、wthatthefunction,definedby(),isahomomorphism.(Notation:meansthesubgroupgeneratedbythegroupelementsxandy.)证明:要证明该映射是一个同态,只要证明由得所以左边=右边故成立所以()是一个同态。
此文档下载收益归作者所有