欢迎来到天天文库
浏览记录
ID:55794464
大小:294.50 KB
页数:3页
时间:2020-06-02
《刘觉平群论第三次作业.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、Fillyournameandyourregistrationnumberintheaboveblanks!Pleaseusethe2003Word,TimesNewRomanforEnglishletters,or宋体(五号)forChinese,andmathtypeforequations(usethesizeforlettersof10.5,asconvention)towriteyourhomework,andgivetheelectronicfilesofyourhomeworkintimetothecorrespondi
2、ngpersonbeingresponsibleforevaluating.ThedeadlineforsendingyourhomeworkthroughemailisSunday24:00oftheweekwhenthehomeworkisgiven.Exercise3inGroupTheoryExercises3-1(1)Provethateachelementsofpermutationgroupcanbeexpressedastheproductsof(12)and(13).证明: ,,,,,∴中的每个元素都可以由和生成。(
3、2)Provethateachelementsofpermutationgroupcanbeexpressedastheproductsamongtranspositions(12),(13),…,(1n).证明:设则∴中任意二元置换可由生成而其他多元置换均可视为多次二元置换的累加∴中每个元素都可以由生成。Exercises3-2Thecorrespondenceof(thetwo-dimensionalcomplexspeciallineartransformationgroup)and(theproperorthochronous
4、Lorentzgroup)isdefinedasthefollowingmappingCheckthemappingisahomomorphismfromto,namely,orforanyi.e.,thatthecorrespondenceispreservedundermultiplication.证明:得证Exercises3-3Letbeagroup,provethatisagroupwithelementsintheformofforallandthemultiplicationlawofthisgroupiswith.证明
5、:(1)封闭性:对任意的,有∴∴封闭性得证(2)结合律:对任意的,有∴结合律得证(3)令的单位元为,则中包含单位元,使得对任意,有(4)对任意,取其逆元分别为,则由定义可得∴对任意的,存在逆元使得综上所述,是一个群。Exercises3-4Letbeafinitegroup,anddefineamapping(orfunction)byforall.(1)Showthatisanactionofon.(2)showthatistransitive.(3)Findtheisotropygroupoftheidentity.(Notati
6、on:isagroupwithelementsintheformofforall.Themultiplicationlawofthisgroupiswith)证明:(1)易得∴∴是对的一个作用。(2)取,则有,所以可看作是左乘,故是有传递性的。(3)
此文档下载收益归作者所有