欢迎来到天天文库
浏览记录
ID:27929048
大小:446.00 KB
页数:16页
时间:2018-12-06
《数学参赛课件 椭圆及其标准方程》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、椭圆及其标准方程参赛选手:****平面内与两个定点;的距离的和的点的轨迹是椭圆。等于常数(大于)这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。椭圆的定义MF1F2说明:常数>
2、F1F2
3、椭圆常数=
4、F1F2
5、线段常数<
6、F1F2
7、无轨迹建系设点写出点集列出方程化简证明求曲线方程的一般步骤思考:观察椭圆的形状,如何建立适当的直角坐标系,才能使椭圆的方程简单?F2F1Oxy建立椭圆的方程以两定点、所在直线为轴,线段的垂直平分线为轴,建立直角坐标系.设,则为椭圆上的任意一点,又设的和等于、与的距离椭圆上点的集合为移项平方,得整理得上式两边再平方,得整理得令,得思考:观察椭圆,你能
8、从中找出表示的线段吗?F1F2MxyO思考:如果焦点在轴上,且的坐标分别为的意义同上,那么椭圆的方程是什么?,,,哪个分母大,焦点就在哪个轴上平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹标准方程相同点焦点位置的判断不同点图形焦点坐标定义a、b、c的关系xyF1F2POxyF1F2PO椭圆的标准方程例1判定下列椭圆的焦点在哪个坐标轴上,并写出的值。焦点在x轴上。焦点在y轴上。例题精析焦点在y轴上。例2求满足下列条件的椭圆的标准方程:例题精析(2)焦距为8,椭圆上一点P到两焦点距离之和为10;(1)两焦点坐标分别是,且椭圆经过点;例2求满足下列条件的椭圆的标准方
9、程:(3)经过两点例题精析(2)焦距为8,椭圆上一点P到两焦点距离之和为10;(1)两焦点坐标分别是,且椭圆经过点;归纳:用待定系数法求椭圆的标准方程思路一:几何视角思路二:代数视角1.根据焦点位置确定方程形式;2.根据条件列方程组,求解3.写出椭圆的标准方程2.根据椭圆定义确定a,b,c;定位定量1.根据焦点位置确定方程形式;3.写出椭圆的标准方程课堂练习1.如果椭圆上一点P到焦点的距离等于6,那么点P到另一个焦点的距离是142.已知经过椭圆的右焦点作直线AB交椭圆于A,B两点,是椭圆的左焦点,则△的周长为20若方程表示焦点在y轴上的椭圆,求k的取值范围是.拓展探究变式(1)若方程
10、表示椭圆呢?(2)若方程表示椭圆呢?1.椭圆的定义;2.椭圆的标准方程;3.求椭圆的标准方程——待定系数法课堂小结4.数形结合,分类讨论思想
此文档下载收益归作者所有