资源描述:
《7时等差数列前n项和()》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第7课时等差数列的前n项和(2)【学习导航】知识网络学习要求1.进一步熟练掌握等差数列的通项公式和前n项和公式.2.了解等差数列的一些性质,并会用它们解决一些相关问题【自学评价】1.等差数列{an}的公差为d,前n项和为Sn,那么数列Sk,S2k-Sk,S3k-S2k……(k∈N*)成等差数列,公差为k2d.2.在等差数列{an}中,若a1>0,d<0,则Sn存在最大值.若a1<0,d>0,则Sn存在最小值.3.对等差数列前项和的最值问题有两种方法:(1)利用:当>0,d<0,前n项和有最大值可由≥0,且≤0,求得n的值当<0,d>0,前n项和有最小值可由≤0,且≥0,求得n的值
2、(2)利用:由二次函数配方法求得最值时n的值【精典范例】【例1】已知一个等差数列的前四项和为21,末四项和为67,前项和为286,求数列的项数。分析条件中的8项可分为4组,每组中的两项与数列的首、尾两项等距。【解】,,。听课随笔【例2】已知两个等差数列{an}、{bn},它们的前n项和分别是Sn、Sn′,若,求.【解法一】∵2a9=a1+a17,2b9=b1+b17,∴S17==17a9,S17′==17b9,∴.【解法二】∵{an}、{bn}是等差数列,∴可设Sn=An2+Bn,Sn′=A’n2+B′n(A、B、A′、B′∈R),∵,进而可设Sn=(2n2+3n)t,Sn′=
3、(3n2-n)t(t∈R,t≠0),∴an=Sn-Sn-1=(2n2+3n)t-[2(n-1)2+3(n-1)t]=(4n+1)t,∴a9=37t.同理可得bn=Sn′-Sn-1′=(3n2-n)t-[3(n-1)2-(n-1)]t=(6n-4)t,∴b9=50t,∴.【例3】数列{an}是首项为23,公差为整数的等差数列,且第六项为正,第七项为负.(1)求数列的公差.(2)求前n项和Sn的最大值.(3)当Sn>0时,求n的最大值.【解】(1)由已知a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得:-<d<-,又d∈Z,∴d=-4(2)∵d<0,∴{an
4、}是递减数列,又a6>0,a7<0∴当n=6时,Sn取得最大值,S6=6×23+(-4)=78(3)Sn=23n+(-4)>0,整理得:n(50-4n)>0∴0<n<,又n∈N*,所求n的最大值为12.点评:可将本题中的公差为整数的条件去掉,再考虑当n为何值时,数列{an}的前n项和取到最大值.【例4】等差数列中,该数列的前多少项和最小?思路1:求出的函数解析式(n的二次函数,),再求函数取得最小值时的n值.思路2:公差不为0的等差数列等差数列前n项和最小的条件为:思路3:由s9=s12得s12-s9=a10+a11+a12=0得a11=0.思维点拔:说明:根据项的值判断前项
5、和的最值有以下结论:①当时,,则最小;②当时,,则最大;③当时,,则最小;④当时,,则最大【追踪训练一】1.已知在等差数列{an}中,a1<0,S25=S45,若Sn最小,则n为(B)A.25B.35C.36D.452.等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项的和为(C)A.130B.170C.210D.2603.两等差数列{an}、{bn}的前n项和的比,则的值是(B)A.B.C.D.4.在等差数列{an}中,已知a14+a15+a17+a18=82,则S31=.5.在等差数列{an}中,已知前4项和是1,前8项和是4,则a17+a18+a19+a
6、20等于___9__.6.在等差数列{an}中,an=n-,当n为何值时,前n项和Sn取得最小值?听课随笔【解法一】由可解得6≤n≤7,可知前6项都是正数,第7项为0,因此S6=S7为Sn的最小值.【解法二】由an=知Sn=a1+a2+…+an==∴当n=6或n=7时,Sn取得最小值.【选修延伸】【例5】已知数列的前项和,求数列的前项和。分析:由知是关于的无常数项的二次函数(),可知为等差数列,可求出,然后再判断哪些项为正,那些项为负,求出。【解】当时,;当,。时适合上式,的通项公式为。由,得,即当时,;当时,。(1)当时,(2)当时,.。【追踪训练二】1.在等差数列{an}中,
7、已知S15=90,那么a8等于(C)A.3B.4C.6D.122.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于(B)A.9B.10C.11D.123.等差数列{an}的通项公式是an=2n+1,由bn=(n∈N*)确定的数列{bn}的前n项和是(A)A.n(n+5)B.n(n+4)C.n(2n+7)D.n(n+2)4.一个等差数列的前12项的和为354,前12项中,偶数项和与奇数项和之比为32∶27,则公差d等于___5___.【