浅谈初中几何证明的教学

浅谈初中几何证明的教学

ID:21842500

大小:53.06 KB

页数:7页

时间:2018-10-25

浅谈初中几何证明的教学_第1页
浅谈初中几何证明的教学_第2页
浅谈初中几何证明的教学_第3页
浅谈初中几何证明的教学_第4页
浅谈初中几何证明的教学_第5页
资源描述:

《浅谈初中几何证明的教学》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、浅谈初中几何证明的教学摘要初中阶段的学生刚接触几何证明大多数学生就算背得定理也不会用,或解决问题时找不到思路,或找到思路不会书写,本文针对这样的问题结合多年教学经验从几何定理的理解、记忆、应用及书写等方面提出了一些初中几何证明教学中的具体做法。关键词思维几何证明逻辑语言理解记忆中图分类号:G633.63文献标识码:A文章编号:1002-7661(2016)19-0027-02数学是思维的体操,数学教育离不开思维。战斗在教学一线的数学教师都知道初中阶段的学生刚接触几何证明大多数学生就算背得定理也不会用,或解决问题时找不到思路,或找到

2、思路不会书写,要学好几何证明题,关键是顺利闯过几何证明题入门这一关。如果能把握好了这一步,就可以顺利地进行几何这门学科的学习。一、几何定理的理解、记忆、应用多数学生记忆几何定理都是死记硬背,就算背下来了也很容易混淆、容易遗忘,而且不会使用,如:平行四边形、菱形、矩形、正方形、梯形的性质、判定,就非常容易混淆,所以光凭死记硬背是不行的,浅谈初中几何证明的教学摘要初中阶段的学生刚接触几何证明大多数学生就算背得定理也不会用,或解决问题时找不到思路,或找到思路不会书写,本文针对这样的问题结合多年教学经验从几何定理的理解、记忆、应用及书写等

3、方面提出了一些初中几何证明教学中的具体做法。关键词思维几何证明逻辑语言理解记忆中图分类号:G633.63文献标识码:A文章编号:1002-7661(2016)19-0027-02数学是思维的体操,数学教育离不开思维。战斗在教学一线的数学教师都知道初中阶段的学生刚接触几何证明大多数学生就算背得定理也不会用,或解决问题时找不到思路,或找到思路不会书写,要学好几何证明题,关键是顺利闯过几何证明题入门这一关。如果能把握好了这一步,就可以顺利地进行几何这门学科的学习。一、几何定理的理解、记忆、应用多数学生记忆几何定理都是死记硬背,就算背下来

4、了也很容易混淆、容易遗忘,而且不会使用,如:平行四边形、菱形、矩形、正方形、梯形的性质、判定,就非常容易混淆,所以光凭死记硬背是不行的,针对这种情况本人在几何定理教学时坚持每一个定理都讲清由来,解释意思,配合图形并转化为逻辑语言。理解是记忆、应用的基础,只有理解了才能记得清、不混淆、记得牢,没有理解的定理更是谈不上应用的,当然记忆当中没有的定理也不可能会想到去用它。为帮助学生理解、记忆、应用定理,在教学中本人坚持每个定理都做到定理、图、逻辑语言配套教学,学生配套记忆。下面本人以“线段的垂直平分线性质定理”的教学为例说明具体做法1.

5、帮助学生理解并记住定理。(1)突破文字语言的理解记忆:“线段的垂直平分线性质定理:线段垂直平分线上的点到这条线段两端点的距离相等。”①将定理分解出条件与结论,条件是:线段垂直平分线线上的点、点到这条线段两端点的距离。结论是:距离相等。②将定理分层次理解,分层方式如下:如此理解学生记忆时就可以将定理记作“点到点的距离相等”再联系记忆其中的“点”“点”“距离”分别是什么。这样学生就能理解并记住定理的文字叙述。(2)将定理由文字语言转化为图形语言理解记忆:根据定理作图如下:①作线段AB;②作线段AB的垂直平分线MN交AB于点O;③在直线

6、MN上任取一点P,连接PA、PB。在这步教学时就要强调几何语言的规范使用,养成规范使用几何语言的好习惯,那么以后准确理解几何语言的意思就不难了。(1)将定理由文字语言转化为符号语言理解记忆:结合上图,角平分线的性质定理可转化为如下符号语言:VMN是线段AB的垂直平分线/.PA=PB(线段垂直平分线上的点到这条线段两端点的距离相等)如此将定理的文字语言、图形语言、符号语言三者结合起来记忆,就可以理解并牢牢的记住定理了。图形直观,看到类似的图形就能联想到这条定理;文字叙述方便记忆,逻辑语言片段为书写证明过程提供“好词好句”。1.应用定

7、理解决问题难关有2个:①找不到解题的思路;②有思路但不能正确完整的用逻辑语言呈现。(1)对第①个难关的解决办法:首先要读懂题目,读题目要分粗读和细读,至少读两遍,刚开始或复杂的问题需要读三遍。第一步:先粗读一遍题目了解题目的大致意思,初步了解题目中已知告诉了什么,要求或求证什么;第二步:第二遍细读题目,细读时要对照图形做到读题目时每一句话都要理解意思并联系所有有关定义、性质、定理,利用综合法将所有能得到的结论呈现出来,简洁的标注在图上或写在草稿上,读到结论时同样简洁的标注在图上或写在草稿上;第三步:再细读题目,结合第二遍细读时将所

8、得到的结论互相联系、结合,看是否又能联系什么定理,推理进一步得到结论(即用“综合法”分析问题寻找思路)。再读到结论时利用“分析法”逆向思维,根据哪些定理可以得到这样的结论,一步一步逆向推理,寻找己知中能得到的条件与结论之间的关联。通常我们都需要“综

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。