欢迎来到天天文库
浏览记录
ID:21832085
大小:502.96 KB
页数:11页
时间:2018-10-25
《高三数学总复习4.3三角函数的图像和性质教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、勤奋·求实·创新·奉献高三数学总复习《三角函数的图像和性质》教案设计武威第十五中学数学组尚永杰第10页志存高远·追求卓越勤奋·求实·创新·奉献一、【教材分析】1.教材背景学生已经学习了三角函数,他们对于正弦函数、余弦函数、正切函数有了基本的了解(包括图像、性质等等);但是并没有对它们进行细致整理、消化。因此需要把三角函数进行系统复习,学生在复习中能进一步熟悉函数图像及性质,同时深化三角函数的整体意识。也借助这一阶段的复习,让学生对高考数学有个初步认识和了解:概念优先,计算为重,突出思维方法,培养学习习惯。因此,安排相对集中的复习课,突出思想方法,
2、突出用数学语言表达数学思维的培养,也是高考的重要内容之一。2.本课的地位和作用本节内容是函数内容的深化,具有非常高的实用价值,在三角函数的研究过程中蕴含了数形结合、分类讨论、归纳推理、演绎推理、换元等数学思想方法,通过学习可以帮助学生进一步理解三角函数,培养学生的函数应用意识,增强学生对数学的兴趣,走进高考。二、【重难点分析】根据新课程标准、高考考纲要求以及对教材的分析,确定本节课重难点如下:重点:教学重点是掌握三角函数的图象和性质,并能灵活应用达到高考要求。难点:对于三角函数图象的不同特征,学生不容易归纳认识清楚。因此,弄清楚图象之间的异同和平
3、移变换是本节的难点之一。三、【目标分析】1.知识技能目标掌握三角函数的概念、图象和性质。2.过程性目标通过自主回顾与探索,让学生经历“温故→应用→提升”的训练过程,完善认知结构,领会数形结合、归纳推理、换元等数学思想方法。3.情感、价值观目标让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美,展现数学实用价值及其在社会进步、人类文明发展中的重要作用。四、【学情分析】1.有利因素学生已经学习了三角函数的定义、图象、性质,已经掌握了三角函数的一些解题方法和思想方法,对于本节课的学习会有很大帮助。2.不利因素本节内容思维
4、量较大,题型较多较难,对思维的严谨性和分类讨论、归纳推理、换元等能力有较高的要求,学生学习起来有一定难度。五、【考纲解读】第10页志存高远·追求卓越勤奋·求实·创新·奉献1.能画出的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间上的性质(如单调性、最大值和最小值以及与轴的交点等),理解正切函数在区间内的单调性.3.了解函数的物理意义;能画出的图象,了解参数对函数图象变化的影响.4.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.六、【考点预测】高考对此部分内容考查的热点与命题趋势为:1.三角函数是历年
5、来高考重点内容之一,三角函数的图象和性质的考查,经常以选择题与填空题的形式出现,还常在解答题中与三角变换结合起来考查,在考查三角函数知识的同时,又考查函数思想、数形结合思想、换元思想和分类讨论思想解决问题的能力。2.2016年的高考将会继续保持稳定,坚持考查三角函数的图象和性质,命题形式会更加灵活多样,要求学生理解并掌握。七、【教法学法】根据对教材、重难点、目标、考纲要求及学生情况的分析,本着教法为学法服务的宗旨,确定以下教法、学法:启发式教学法、类比复习法,并利用多媒体辅助教学。遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的
6、现代教育原则。以问题的提出、问题的解决为主线,倡导学生主动参与,自主探究,通过分析、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。八、【教学过程流程设计】复习考点→典例精讲→方法指点→知识扩展→课堂练习→课堂小结→课后作业九、【教学过程】一、知识梳理(第10页志存高远·追求卓越勤奋·求实·创新·奉献设计意图:引导学生梳理课本基础知识,并重点讲解高考高频考点应该注意的地方,让学生再一次理解重难点,是学生达到高考的要求。)(时间安排:约15分钟。)1.周期函数的定义对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个
7、值时,都成立,那么就把函数叫做周期函数,不为零的常数叫做这个函数的周期。2.正弦函数、余弦函数、正切函数的图像3.三角函数的单调区间:的递增区间是,递减区间是;的递增区间是,递减区间是,重、难点问题重点讲解!的递增区间是,4.函数最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线第10页志存高远·追求卓越勤奋·求实·创新·奉献的交点都是该图象的对称中心。注意:由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。利用图象的变换作图象时,提倡先平移后伸
8、缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。途径
此文档下载收益归作者所有