高中数学导数及其应用专题

高中数学导数及其应用专题

ID:20830728

大小:1.14 MB

页数:20页

时间:2018-10-16

高中数学导数及其应用专题_第1页
高中数学导数及其应用专题_第2页
高中数学导数及其应用专题_第3页
高中数学导数及其应用专题_第4页
高中数学导数及其应用专题_第5页
资源描述:

《高中数学导数及其应用专题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题导数及其应用考点精要1.了解导数概念的实际背景.2.理解导数的几何意义.3.了解函数的单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).4.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).5.会利用导数解决某些实际问题.热点解析导数的几何意义及其应用,基本初等函数的导数公式及导数运算的四则运算法则是高考的重点与热点,要会利用导数求曲线的切线,注意区分在某点处的切线与过某点的曲线的切线.求函数在点(x0,)处的

2、切线方程或切线斜率;求函数的单调增区间或单调减区间;求函数在(a,b)上的极值,求在[a,b]上的最大值、最小值等等,在近几年高考试题中频频出现.知识梳理1.一般地,函数y=在x=x0处的瞬时变化率是=我们称它为函数y=在x=x0处的导数,记作或y′

3、x=x0,即=2.函数在x=x0处的导数就是切线PT的斜率k,即k==3.导函数=y′=4.c′=0,(x1)′=1,(x2)′=2x,,5.基本初等函数的导数公式:20(1)若=c,则=0;(2)若=xn(n),则=nxn-1;(3)若=sinx,则=cosx;(4)若=cosx,则=-sinx;(5)若=ax,则=axlna;(6

4、)若=ex,则=ex;(7)若=logax,则=;(8)若=lnx,则=;6.导数运算法则:(1)[±]′=±(2)[]′=+;(3)7.导数的应用体现在三个方面:(1)求曲线的切线:其方法是,先求函数在某点处的导数得切线斜率,再用点斜式建立切线方程,后化为一般式.求曲线的切线时要注意两种不同的要求:一种是求“函数在某点处的切线”,这个点就是切点;一种是求“函数过某点的切线”,则这个点可以是切点,也可以不是切点。这两种要求的切线的求法有区别.(2)求函数的极大(小)值与最大(小值)求可导函数的极值的步骤:①求导数;这一步是基础,要求利用导数公式及运算法则正确地求出导函数.②求方程=

5、0的根;这一步用到方程知识,注意=0的根应在y=的定义域中.③检验在方程=0的根(又叫函数驻点)的左、右侧的符号是否发生变化:如果在根的左侧附近为正,右侧附近为负,那么函数y=在这个根处取得极大值;如果相反,在这个根的左侧附近为负,右侧附近为正,那么函数y=在这个根处取得极小值.④如果求闭区间[a,b]上函数的最值,则应在、及开区间(a,b)内的极值中间作比较,最大的就是最大值,最小的就是最小值.(3)研究函数的单调性设函数y=在某个区间D内可导,且,则20在这个区间上为增函数;若,则在这个区间上为减函数.(注意:这里=0在D的任意一个子区间内不能恒成立,否则,函数在这个子区间内为

6、常函数,为水平线段,不具有单调性)(4)不等式的恒成立问题与能成立(存在性)问题①不等式的恒成立问题若在上恒成立,等价于在上的最小值成立,若在上恒成立,等价于在上的最大值成立对任意,都有成立的充要条件是②不等式的能成立(存在性)问题若在上能成立,等价于在上的最大值成立若在上能成立,等价于在上的最小值成立。例题精讲:例1.曲线y=xex+2x+1在点(0,1)处的切线方程为________________例2.有下列命题:①x=0是函数y=x3的极值点②三次函数=ax3+bx2+cx+d有极值点的充要条件是b2-3ac>0③奇函数=mx3+(m-1)x2+48(m-2)x+n在区间(

7、-4,4)上是单调函数其中假命题的序号是_______________20例3.已知函数=x3+bx2+cx+d的图像过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0(1)求函数y=的解析式;(2)求函数y=的单调区间.例4.(没有图像)已知函数R).(1)若曲线在点处的切线与直线平行,求a的值;om](2)求函数的单调区间和极值;(3)当,且时,证明:解:(I)函数所以又曲线处的切线与直线平行,所以………………4分(II)令20当x变化时,的变化情况如下表:[来+0—极大值由表可知:的单调递增区间是,单调递减区间是所以处取得极大值,…………9分(III

8、)当由于只需证明令因为,所以上单调递增,当即成立。故当时,有…………13分例518.(本小题共14分)已知函数(Ⅰ)若,求函数的极值和单调区间;(II)若在区间上至少存在一点,使得成立,求实数的取值范围.解:(I)因为,……………2分20当,,令,得,……………3分又的定义域为,,随的变化情况如下表:0极小值所以时,的极小值为1.…5分的单调递增区间为,单调递减区间为;……6分(II)解法一:因为,且,令,得到,在区间存在一点,使得成立,充要条件是在区间上的最小值小于

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。