高等数学(下)考试模拟题

高等数学(下)考试模拟题

ID:18634391

大小:1.12 MB

页数:12页

时间:2018-09-20

高等数学(下)考试模拟题_第1页
高等数学(下)考试模拟题_第2页
高等数学(下)考试模拟题_第3页
高等数学(下)考试模拟题_第4页
高等数学(下)考试模拟题_第5页
资源描述:

《高等数学(下)考试模拟题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高等数学(下册)考试试卷(一)一.选择题(3分10)1.点,的距离().A.B.C.D.2.设两平面方程分别为和,则两平面的夹角为().A.B.C.D.3.函数的定义域为().A.B.C.D.4.点到平面的距离为().A.3B.4C.5D.65.函数的极大值为().A.0B.1C.D.6.设,则().A.6B.7C.8D.97.若几何级数是收敛的,则().A.B.C.D.8.幂级数的收敛域为().A.B.C.D.9.级数是().A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程的通解为().A.B.C.D.1

2、2二.填空题(4分5)1.直线过点且与直线平行,则直线的方程为__________________________.2.函数的全微分为___________________________.3.曲面在点处的切平面方程为_____________________________________.4.的麦克劳林级数是______________________.5.微分方程在条件下的特解为______________________________.三.计算题(5分6)1.设,求2.设,而,求3.已知隐函数由确定,求4.

3、如图,求球面与圆柱面()所围的几何体的体积.5.求微分方程的通解.四.应用题(10分2)1.试用二重积分计算由和所围图形的面积.2.如图,以初速度将质点铅直上抛,不计阻力,求质点的运动规律(提示:.当时,有,)12参考答案一.选择题CBABACCDBA.二.填空题1..2..3..4..5..三.计算题1..2..3..4..5..四.应用题1..2..12高等数学(下册)考试试卷(二)一、填空题(每小题3分,共计24分)1、=的定义域为D=。2、二重积分的符号为。3、由曲线及直线,所围图形的面积用二重积分表示为,其

4、值为。4、设曲线L的参数方程表示为则弧长元素。5、设曲面∑为介于及间的部分的外侧,则。6、微分方程的通解为。7、方程的通解为。8、级数的和为。二、选择题(每小题2分,共计16分)1、二元函数在处可微的充分条件是()(A)在处连续;(B),在的某邻域内存在;(C)当时,是无穷小;(D)。2、设其中具有二阶连续导数,则等于()(A);(B);(C);(D)0。3、设:则三重积分等于()(A)4;(B);12(C);(D)。4、球面与柱面所围成的立体体积V=()(A);(B);(C);(D)。5、设有界闭区域D由分段光滑曲

5、线L所围成,L取正向,函数在D上具有一阶连续偏导数,则(A);(B);(C);(D)。6、下列说法中错误的是()(A)方程是三阶微分方程;(B)方程是一阶微分方程;(C)方程是全微分方程;(D)方程是伯努利方程。7、已知曲线经过原点,且在原点处的切线与直线平行,而满足微分方程,则曲线的方程为()(A);(B);(C);(D)。128、设,则()(A)收敛;(B)发散;(C)不一定;(D)绝对收敛。三、求解下列问题(共计15分)1、(7分)设均为连续可微函数。,求。2、(8分)设,求。四、求解下列问题(共计15分)。1

6、、计算。(7分)2、计算,其中是由所围成的空间闭区域(8分)。五、(13分)计算,其中L是面上的任一条无重点且分段光滑不经过原点的封闭曲线的逆时针方向。六、(9分)设对任意满足方程,且存在,求。七、(8分)求级数的收敛区间。参考答案一、1、当时,;当时,;2、负号;3、;4、;5、180;6、;7、;8、1;二、1、D;2、D;3、C;4、B;5、D;6、B;7、A;8、C;三、1、;;2、;;四、1、;122、;五、令则,;于是①当L所围成的区域D中不含O(0,0)时,在D内连续。所以由Green公式得:I=0;②

7、当L所围成的区域D中含O(0,0)时,在D内除O(0,0)外都连续,此时作曲线为,逆时针方向,并假设为及所围成区域,则六、由所给条件易得:又=即即又即七、令,考虑级数当即时,亦即时所给级数绝对收敛;当即或时,原级数发散;当即时,级数收敛;当即时,级数收敛;级数的半径为R=1,收敛区间为[1,3]。高等数学(下册)考试试卷(三)12一、填空题(每小题3分,共计24分)1、设,则。2、。3、设,交换积分次序后,。4、设为可微函数,且则。5、设L为取正向的圆周,则曲线积分。6、设,则。7、通解为的微分方程是。8、设,则它的

8、Fourier展开式中的。二、选择题(每小题2分,共计16分)。1、设函数,则在点(0,0)处()(A)连续且偏导数存在;(B)连续但偏导数不存在;(C)不连续但偏导数存在;(D)不连续且偏导数不存在。2、设在平面有界区域D上具有二阶连续偏导数,且满足及,则()(A)最大值点和最小值点必定都在D的内部;(B)最大值点和最小值点必定都在D的边界上

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。