纳米zro2粉体的热处理研究

纳米zro2粉体的热处理研究

ID:12537891

大小:191.00 KB

页数:10页

时间:2018-07-17

纳米zro2粉体的热处理研究_第1页
纳米zro2粉体的热处理研究_第2页
纳米zro2粉体的热处理研究_第3页
纳米zro2粉体的热处理研究_第4页
纳米zro2粉体的热处理研究_第5页
资源描述:

《纳米zro2粉体的热处理研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、纳米ZrO2粉体的热处理研究近些年来,ZrO2由于其特殊的性能受到了重视,用它制作的产品已经在许多工业领域用于实际。众所周知,陶瓷部件的质量依赖于原料的质量,因此许多学者将制备ZrO2粉体作为了研究重点,国家自然科学基金委也在无机非金属的自然科学学科发展方向上指出了纳米粉体的制备科学与工程是优先发展的方向。目前制备纳米ZrO2粉的方法一般有水解法、喷雾热解法、共沉淀法、水热法和等离子体法等,其中共沉淀法因其适于大规模生产和成本低廉等特点而被广泛应用。在共沉淀方法中,热处理是很重要的一步。在粉体制造工艺中热处理的主要目的有三:(1)通过去除残留的有机物及酸根来提高粉体纯度;

2、(2)调控粉体的比表面积。粉体的比表面积与其颗粒度之间应遵从下述关系:(1)式中,、s、ρ分别为该粉体的平均粒径、比表面积及密度;k为一常数,它随粉体颗粒形状不同而在6~11之间变化,对于严格的球形粒子足k=6。当然,这里未考虑颗粒之间的团聚问题。(3)调控粉体的物相,亦即调控其微观结构。Kobayashi、Khor等讨论了等离子法制备纳米ZrO2粉体中热处理的作用;Gutzov、DaiXiaming等对热处理与化学成分、荧光光谱的影响做了研究。系统研究并沉淀法中热处理与纳米ZrO2粉体性能关系的工作尚未见报道.1. 实验方法所用粉末样品均是以沉淀法制备,各样品的热处理参

3、数如表1所示。表1样品热处理参数一览表样品号4-34-64-96-36-66-98-38-68-910-310-610-9处理温度/℃400400400600600600800800800100010001000保温时间/h369369369369处理后的样品粉末的形貌和粒径是用TEM观测,部分样品又用X射线小角散射方法(SAXS)测定其粒径;比表面积是用BET模型以氮吸附法测量;粉体的物相用XRD检测,其单斜相(m-ZrO2)的体积含量按下式计算式中,It(101)、Im(111)、Im(101)分别是t-ZrO2的(101)、m-ZrO2(111)和(101)的强度,

4、Xm为双相体系中m-ZrO2的积分强度份额。2结果与讨论2.1粉体的几何形态各样品TEM照片如图1所示。可见所有样品粉体的一次颗粒形状都基本上是等轴的。它们的区别只在于:(1)在较低温度,比如400℃处理时,其颗粒的轮廓线比较圆滑,而在较高温度下则变成多边形了。这显然是由于晶化程度提高或晶粒长大所致,在同一处理温度下,延长时间也有同样的效果,但不如提高温度来得明显;(2)在较低温度下处理较短时间,其颗粒间的相互粘连亦即团聚较轻,而高温下特别是处理较长时间则粘连较重。这实际上是高温下物质扩散的结果。2.2比表面积和粒径热处理后粉体比表面积(SSA)测试结果如表2所示。表2粉

5、体比表面积、粒径与热处理条件的关系温度/℃4006008001000时间/m2·g-1369369369369Dx/nm147-12955.751.447.325.622.5-15.213.311.3Dx/nm7.5-8.519.821.423.343.049.0-72.582.87.5由表中可见,在试验的温度和时间范围内,随着热处理温度的升高,SSA急速下降。随着处理时间的延长,SSA也下降。但除开始阶段如400℃外,下降速度较慢。如前所述,我们可据比表面积数据来计算出相应样品的粒径人与人的关系,再利用几个M测定得的粒径八,并参考对照TEM照片即可以估算出是值,对于本系

6、列样品足二6.5,于是各样品粉末的粒径人可以很容易地计算出来,一同列于表2。为清楚起见将人~T(t)的关系绘得一组曲线如图人从颗粒的角度看,粉末的热处理实际上是其晶化(包括相变)和团聚长大的过程。晶化过程是物质分子的重新排列,在一定温度下,某种相的出现或消失取决于其热力学参数。这一点将在后文中专门讨论,这里仅对粒子长大过程做一简单探讨。我们可以将粉末热处理过程看作是一种无液相的烧结过程,只不过在陶瓷成型后的坯体中粉粒被强行挤压到一起,就是说它们之间的距离比较小,而松散粉体热处理时粉粒间的距离则较大,但松散粉样中的团聚体内粒间距则很小。观察分析热处理样品的TEM照片,可以认

7、为粉末颗粒的长大主要是靠两种机制进行的:(1)             气相扩散导致小颗粒消失、大颗粒长大。据凯尔文(Kelvin)理论,曲率半径为r的粒子表面的蒸汽压p与平面固体的蒸汽压p0之间应遵循如下关系(4)式中,M、ρ、γ分别为该物质的分子量、密度及表面能;R、T则为气体常数和处理温度。这种表面曲率变化引起的物质迁移对粒径很小的纳米粒子是必须考虑的。从TEM照片可见在4—3样品中有许多单独存在的粒径仅为几纳米的小粒子,而随着热处理温度的提高和时间的延长,这些小粒子全部消失了,最可能的机制就是由于蒸汽压的显著差异造成物

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。