欢迎来到天天文库
浏览记录
ID:9577488
大小:161.44 KB
页数:7页
时间:2018-05-03
《高三数学一轮复习 导数及其应用巩固与练习》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、巩固1.设正弦函数y=sinx在x=0和x=附近的平均变化率为k1,k2,则k1,k2的大小关系为( )A.k1>k2B.k1k2.2.设y=-2exsinx,则y′等于( )A.-2excosxB.-2exsinxC.2exsinxD.-2ex(sinx+cosx)解析:选D.∵y=-2exsinx,∴y′=(-2ex)′sinx+(-2ex)·(sinx)′=-2exsinx-2excosx=-2ex(
2、sinx+cosx).3.已知m<0,f(x)=mx3+,且f′(1)≥-18,则实数m等于( )A.-9B.-3C.3D.9解析:选B.由于f′(x)=3mx2+,故f′(1)≥-183m+≥-18,由m<0得3m+≥-183m2+18m+27≤03(m+3)2≤0,故m=-3.4.(高考福建卷)若曲线f(x)=ax2+lnx存在垂直于y轴的切线,则实数a的取值范围是________.解析:f′(x)=2ax+,x∈(0,+∞).∵f(x)存在垂直于y轴的切线,∴f′(x)=0有解,即2ax+=0在(0,+∞)有解,∴a=-,∴a∈(-∞,0
3、).答案:(-∞,0)5.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.解析:易得切点P(5,3),∴f(5)=3,k=-1,即f′(5)=-1.∴f(5)+f′(5)=3-1=2.答案:26.若曲线y=x3-2ax2+2ax上任意点处的切线的倾斜角都是锐角,求整数a的值.解:∵曲线y=x3-2ax2+2ax,∴该曲线上任意点处切线的斜率k=y′=3x2-4ax+2a.又∵切线的倾斜角都是锐角,∴k>0恒成立,即3x2-4ax+2a>0恒成立.∴Δ=(-4a)2-4×3×2a=16a2-2
4、4a<0,∴05、 )A.(x+)′=1+B.(log2x)′=C.(3x)′=3xlog3eD.(x2cosx)′=-2xsinx解析:选B.(x+)′=1-,A错;(3x)′=3xln3,C错;(x2cosx)′=2xcosx-x2sinx,D错;故选B.4.已知二次函数f(x)的图象如图所示,则其导函数f′(x)的图象大致形状是( )解析:选B.设二次函数为y=ax2+b(a<0,b>0),则y′=2ax,又∵a<0,故选B.5.曲线y=x3+x2在点T(1,)处的切线与两坐标轴围成的三角形的面积为( )A.B.C.D.解析:选D.易知点T为切点,由f′6、(1)=2,故切线方程为:y=2x-,其在两坐标轴的截距分别为,-,故直线与两坐标轴围成的三角形面积S=××7、-8、=.6.(高考安徽卷)设函数f(x)=x3+x2+tanθ,其中θ∈[0,],则导数f′(1)的取值范围是( )A.[-2,2]B.[,]C.[,2]D.[,2]解析:选D.∵f′(x)=sinθ·x2+cosθ·x,∴f′(1)=sinθ+cosθ=2sin(θ+).∵θ∈[0,],∴θ+∈[,].∴sin(θ+)∈[,1].∴2sin(θ+)∈[,2].7.已知曲线C:y=lnx-4x与直线x=1交于一点P,那么曲线C在点P处的9、切线方程是________.解析:由题可解得P(1,-4),则由y′=-4可得曲线C在P处的切线斜率为k=y′10、x=1=-3,故切线方程为y-(-4)=-3(x-1)即3x+y+1=0.答案:3x+y+1=08.已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=x+2,则f(1)+f′(1)=________.解析:由已知切点在切线上,所以f(1)=+2=,切点处的导数为切线的斜率,所以f′(1)=,所以f(1)+f′(1)=3.答案:39.下列图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函11、数f′(x)的图象,则f(-1)=________.解析:∵f′(x)=x2+2ax+(a2-1),∴导函数f′(x)的图象开口向上.又
5、 )A.(x+)′=1+B.(log2x)′=C.(3x)′=3xlog3eD.(x2cosx)′=-2xsinx解析:选B.(x+)′=1-,A错;(3x)′=3xln3,C错;(x2cosx)′=2xcosx-x2sinx,D错;故选B.4.已知二次函数f(x)的图象如图所示,则其导函数f′(x)的图象大致形状是( )解析:选B.设二次函数为y=ax2+b(a<0,b>0),则y′=2ax,又∵a<0,故选B.5.曲线y=x3+x2在点T(1,)处的切线与两坐标轴围成的三角形的面积为( )A.B.C.D.解析:选D.易知点T为切点,由f′
6、(1)=2,故切线方程为:y=2x-,其在两坐标轴的截距分别为,-,故直线与两坐标轴围成的三角形面积S=××
7、-
8、=.6.(高考安徽卷)设函数f(x)=x3+x2+tanθ,其中θ∈[0,],则导数f′(1)的取值范围是( )A.[-2,2]B.[,]C.[,2]D.[,2]解析:选D.∵f′(x)=sinθ·x2+cosθ·x,∴f′(1)=sinθ+cosθ=2sin(θ+).∵θ∈[0,],∴θ+∈[,].∴sin(θ+)∈[,1].∴2sin(θ+)∈[,2].7.已知曲线C:y=lnx-4x与直线x=1交于一点P,那么曲线C在点P处的
9、切线方程是________.解析:由题可解得P(1,-4),则由y′=-4可得曲线C在P处的切线斜率为k=y′
10、x=1=-3,故切线方程为y-(-4)=-3(x-1)即3x+y+1=0.答案:3x+y+1=08.已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=x+2,则f(1)+f′(1)=________.解析:由已知切点在切线上,所以f(1)=+2=,切点处的导数为切线的斜率,所以f′(1)=,所以f(1)+f′(1)=3.答案:39.下列图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函
11、数f′(x)的图象,则f(-1)=________.解析:∵f′(x)=x2+2ax+(a2-1),∴导函数f′(x)的图象开口向上.又
此文档下载收益归作者所有