集合与简易逻辑基本概念回归课本复习材料1.docx

集合与简易逻辑基本概念回归课本复习材料1.docx

ID:62550006

大小:38.78 KB

页数:6页

时间:2021-05-12

集合与简易逻辑基本概念回归课本复习材料1.docx_第1页
集合与简易逻辑基本概念回归课本复习材料1.docx_第2页
集合与简易逻辑基本概念回归课本复习材料1.docx_第3页
集合与简易逻辑基本概念回归课本复习材料1.docx_第4页
集合与简易逻辑基本概念回归课本复习材料1.docx_第5页
资源描述:

《集合与简易逻辑基本概念回归课本复习材料1.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、精品资源集合与简易逻辑基本概念回归课本复习材料~~1今天,我怕谁之一命题趋与应试策略1.有关集合的高考试题.考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用文氏图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练^2.有关“充要条件”、命题真伪的试题.主要是对数学概念有准确的记忆和深层次的理解^试题以选择题、填空题为主,难度不大,要求对基本知识、基本题型,求解准确熟练^1.(1)设P、Q为两个非空实数集合,定义集合P+Q={a+b

2、awP

3、,bwQ},若P={0,2,5},Q={1,2,6},则P+Q中元素的有个。(2)ItA={x

4、x2+3x+a=0},求集合A中所有元素之和。(3)非空集合SJ{1,2,3,4,5},且满足“若awS,则6—awS",这样的S共有个2.(1)集合A={x

5、ax—1=0},B={x

6、x2—3x+2=0},且aLJb=b,则实数a=.(2)已知集合A={x

7、

8、x

9、M4,xwR},B={x

10、

11、x—3

12、Ma,awR},若AmB,则a的取值范围是()A.0ma三1B.a工1C.a<1D.0::a<1(3)设ai,bi,ci,a2,b2,C2均为非零实数,不等式aix2+bi

13、x+ci>0和a2x2+b2x+c2>0的解集分别为集合M和N,那么"a1=b1=c1”是“m=n”的a2b2c2A、充分非必要条件B、必要非充分条件C、充要条件D、既非充分又非必要条件(4)已知集合P=(x2=1},Q={xmx=1},若Q^P,则实数m的值为()AiBi,-iC-iD0,i,-i3.(i)满足{1,2库M1{1,2,3,4,5}集合M有个。(答:7)(2)已知集合A={i,2,3,4},那么A的真子集的个数是()A.i5B.i6C.3D.4(3)满足条件MU{i}={i,2,3}的集合M的个数是()A.4B.3C.2D.i4.(i)设全集U={

14、1,2,3,4,5},若aCb={2},(CuA)Cb={4},(CUA)n(CUB)={1,5}iUA=,B=.(2)某高级中学高三特长班有100名学生,其中学绘画的学生67人,学音乐的学生45人,而学体育的学生既不能学绘画,又不能学音乐,人数是21人,那么同时学绘画和音乐的学生有人?5.(i)设集合M={x

15、y=Jx-2},集合N="

16、y=x2,xWM},则mPIn=___⑵.已知A={yy=2x+1,xWR),B=履y)y=x2+1,xWR,则有()(A)AcB={(0,1),(2,5(B)A=B(C)B工A(D)AcB=4(3).设集合M={y

17、y=x2+

18、2x+1},N=k

19、y=x2—2x+5},则Mcn等于()(A)一(B)"1,4?(C)4,二(D)0,二欢迎下载精品资源6.(1)设集合P={xax+2>a},3吏P,那么a的取值范围(2)已知函数f(x)=4x2-2(p-2)x-2p2—p+1在区间[—1,1]上至少存在一个实数c,使f(c)>0,求实数p的取值范围。(3)设集合M={x-2ax-1<31,2更M。求字母a的范围。2(4)设集合m=

20、xa2x-2a>0L2正M。求字母a的范围x-4a⑸已知关于x的不等式ax—5父0的解集为M,若3WM且5更M,求实数a的取值范围x—.ax5一7.(1)设p:x

21、>2或xM七;q:<0,则非q是p的()2-x(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(2)函数f(x)=x2-2ax-3在区间[1,2]存在反函数的充分不必要条件是()A、2£1或222B、a>0C、a=1D、1EaE2友情提示1.集合元素具有确定性、无序性和互异性.在求有关集合问题时,尤其要注意元素的互异性,2.遇到A0

22、B=0时,你是否注意到“极端”情况:A=0或B=0;同样当AEB时,你是否忘记A=0的情形?要注意到0是任何集合的子集,是任何非空集合的真子集。3.对于含有n个元素的有限集合M,其子集、真子集、非空子集

23、、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.4.集合的运算性质:⑴AljB=AuB£A;⑵a。b=Bub三a;⑶A=B=麴A=uB;⑷An加=0uuAJB;5.研究集合问题,一定要理解集合的意义一一抓住集合的代表元素。如:{x

24、y=lgx}一函数的定义域;W

25、yTgx」一函数的值域;[x,y)

26、y=lgx:一函数图象上的点集。6.数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。7.复合命题真假的判断。“或命题”的真假特点是“一真即真,要假全假”;“且命题

27、”的真假特

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。