欢迎来到天天文库
浏览记录
ID:56883489
大小:151.15 KB
页数:6页
时间:2020-07-19
《高考数学复习练习第1部分 专题三 第二讲 预测演练提能.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{an}的通项公式;(2)求a1+a4+a7+…+a3n-2.解:(1)设{an}的公差为d.由题意a121=a1a13,即(a1+10d)2=a1(a1+12d),于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),或d=-2.故an=-2n+27.(2)令Sn=a1+a4+a7+…+a3n-2.由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.nn从而Sn
2、=(a1+a3n-2)=(-6n+56)=-3n2+28n.222.已知数列{an}的前n项和为Sn,a1=1,Sn=nan-n(n-1)(n∈N*).(1)求数列{an}的通项公式;2(2)设bn=,求数列{bn}的前n项和Tn.anan+1解:(1)∵Sn=nan-n(n-1),当n≥2时,Sn-1=(n-1)an-1-(n-1)(n-2),∴an=Sn-Sn-1=nan-n(n-1)-(n-1)an-1+(n-1)(n-2),即an-an-1=2.∴数列{an}是首项a1=1,公差d=2的等差
3、数列,故an=1+(n-1)·2=2n-1,n∈N*.(2)由(1)知2211bn===-,anan+12n-12n+12n-12n+111111111∴Tn=b1+b2+…+bn=1-+-+-+…+-=1-=(3)(35)(57)(2n-12n+1)2n+12n.2n+13133.数列{an}的前n项和为Sn,且Sn=(an-1),数列{bn}满足bn=bn-1-(n≥2),且b1244=3.(1)求数列{an}与{bn}的通项公式;(2)设数列{cn}满足cn=an·log2(bn+1)
4、,其前n项和为Tn,求Tn.3解:(1)对于数列{an}有Sn=(an-1),①23Sn-1=(an-1-1)(n≥2),②23由①-②得an=(an-an-1),即an=3an-1,23n=1时,由S1=(a1-1),得a1=3,2则an=a1·qn-1=3·3n-1=3n.13对于数列{bn}有bn=bn-1-(n≥2),4411bn+11可得bn+1=bn-1+,即=.44bn-1+1411bn+1=(b1+1)n-1=4×n-1=42-n,(4)(4)即bn=42-n-1.(2)由(1)可知
5、cn=an·log2(bn+1)=3n·log242-n=3n·log224-2n=3n(4-2n).Tn=2·31+0·32+(-2)·33+…+(4-2n)·3n,③3Tn=2·32+0·33+…+(6-2n)·3n+(4-2n)·3n+1,④由③-④得-2Tn=2·3+(-2)·32+(-2)·33+…+(-2)·3n-(4-2n)·3n+1=6+(-2)(32+33+…+3n)-(4-2n)·3n+1.91-3n-1则Tn=-3++(2-n)·3n+11-3155=-+-n·3n+1.2
6、(2)4.(2013·合肥模拟)已知数列{an}的前n项和为Sn,且2Sn+3=3an(n∈N*).(1)求数列{an}的通项公式;4n+17(2)设bn=,Tn=b1+b2+…+bn,求证:Tn<(n∈N*).an2解:(1)当n=1时,2S1+3=3a1⇒a1=3;当n≥2时,2Sn+3=3an,2Sn-1+3=3an-1,∴2Sn-2Sn-1=3an-3an-1,即an=3an-1.∴数列{an}是以3为首项,3为公比的等比数列,∴数列{an}的通项公式为an=3n.4n+11(2)证明:由(
7、1)得bn==(4n+1)n,an(3)111∴Tn=b1+b2+…+bn=5×1+9×2+…+(4n-3)×n-1+(4n+1)(3)(3)(3)1n,①(3)11111∴Tn=5×2+9×3+…+(4n-3)×n+(4n+1)n+1,②3(3)(3)(3)(3)由①-②得211111Tn=5×1+42+3+…+n-(4n+1)×n+13(3)[(3)(3)(3)](3)111111=+41+2+3+…+n-(4n+1)×n+13[(3)(3)(3)(3)](3)11·1-133n1=+4·()-
8、(4n+1)×n+131(3)1-3111=+21--(4n+1)×n+1.3(3n)(3)1∴2Tn=7-(4n+7)×n.(3)7117∴Tn=-(4n+7)×n<.22(3)25.已知数列{an}的各项都为正数,且对任意n∈N*,an+21=anan+2+k(k为常数).(1)若k=(a2-a1)2,求证:a1,a2,a3成等差数列;a2(2)若k=0,且a2,a4,a5成等差数列,求的值;a1(3)已知a1=a,a2=b(a,b为常数),是否存在常数λ,使得a
此文档下载收益归作者所有