欢迎来到天天文库
浏览记录
ID:50092439
大小:823.50 KB
页数:19页
时间:2020-03-04
《三角形全等判定SSS.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、12.2.1三角形全等的判定(SSS)知识回顾ABC1.什么叫全等三角形?能够完全重合的两个三角形叫全等三角形。2.全等三角形有什么性质?全等三角形的对应边相等,对应角相等3.已知,试找出其中相等的边与角≌≌ABC知识回顾即:三条边对应相等,三个角对应相等的两个三角形全等。六个条件,可得到什么结论?≌与满足上述六个条件中的一部分是否能保证与全等呢?问题ABC一个条件可以吗?两个条件可以吗?一个条件可以吗?有一条边相等的两个三角形不一定全等探究活动2.有一个角相等的两个三角形不一定全等结论:有一个条件相等不能保证两个三角形全等.6cm300有两个条件对应相等不能保证三角形全等.60o300
2、不一定全等有两个角对应相等的两个三角形两个条件可以吗?3.有一个角和一条边对应相等的两个三角形2.有两条边对应相等的两个三角形4cm6cm不一定全等30060o4cm6cm不一定全等30o6cm结论:探究活动三个条件呢?探究活动2.三个角;1.三条边;3.两边一角;4.两角一边。如果给出三个条件画三角形,你能说出有哪几种可能的情况?结论:三个内角对应相等的三角形不一定全等。探究活动有三个角对应相等的两个三角形60o30030060o90o90o三个条件呢?若已知一个三角形的三条边,你能画出这个三角形吗?画一个三角形,使它的三边长分别为4cm,5cm,7cm.三边对应相等的两个三角形会全等
3、吗?画法:1.画线段AB=4cm;2.分别以A、B为圆心,5cm、7cm长为半径作圆弧,交于点C;3.连结AB、AC;∴△ABC就是所求的三角形.动手试一试探究活动结论三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。用上面的结论可以判定两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.∴△ABC△ADC(SSS)例1已知:如图,AB=AD,BC=CD,求证:△ABC≌△ADCABCDACAC()≌AB=AD()BC=CD()证明:在△ABC和△ADC中=已知已知公共边分析:要证明△ABC≌△ADC,首先看这两个三角形的三条边是否对应相等。归纳:①准备条件:证全
4、等时要用的间接条件要先证好;②三角形全等书写三步骤:写出在哪两个三角形中摆出三个条件用大括号括起来写出全等结论证明的书写步骤:例2如图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.ABCD应用迁移,巩固提高ABCD.CDBDBCD=的中点,是证明:QACDABD中,和在DDADADCDBDACAB(公共边)=(已证)=(已知)=≌.SSSACDABD)(DD(1)(2)∠BAD=∠CAD.(2)由(1)得△ABD≌△ACD,∴∠BAD=∠CAD.(全等三角形对应角相等)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角
5、,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC便是∠AOB的平分线.为什么?练习课本P8OMABNC≌(全等三角形对应角相等)(已知)(已知)(公共边)小明做了一个如图所示的风筝,他想去验证∠BAC与∠DAC是否相等,但手头却只有一把足够长的尺子。你能帮助他想个方法吗?说明你这样做的理由。ABDC思考?如图,AB=AC,AE=AD,BD=CE,求证:△AEB≌△ADC。证明:∵BD=CE∴BD-ED=CE-ED,即BE=CDCABDE练一练在AEB和ADC中,AB=AC(已知)AE=AD(已知)BE=CD(已证)∴△AEB≌△A
6、DC(sss)解:①∵E、F分别是AB,CD的中点()又∵AB=CD∴AE=CF在△ADE与△CBF中DE==∴△ADE≌△CBF()∴AE=ABCF=CD()1212补充练习:如图,已知AB=CD,AD=CB,E、F分别是AB,CD的中点,且DE=BF,说出下列判断成立的理由.①△ADE≌△CBF②∠A=∠C线段中点的定义BFADAECFSSS△ADE≌△CBF全等三角形对应角相等已知ADBCFECB②∵∴∠A=∠C()=小结2.三边对应相等的两个三角形全等(简写成“边边边”或“SSS”);1.知道三角形三条边的长度怎样画三角形;3.初步学会理解证明的思路,应用“边边边”证明两个三角形
7、全等.Over!
此文档下载收益归作者所有