线段的轴对称性 (4).ppt

线段的轴对称性 (4).ppt

ID:49690167

大小:2.04 MB

页数:15页

时间:2020-03-01

线段的轴对称性 (4).ppt_第1页
线段的轴对称性 (4).ppt_第2页
线段的轴对称性 (4).ppt_第3页
线段的轴对称性 (4).ppt_第4页
线段的轴对称性 (4).ppt_第5页
资源描述:

《线段的轴对称性 (4).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、5.3简单的轴对称图形北师大版七年级(下册)(第1课时)回顾与思考回顾思考1、轴对称与轴对称图形是否是同一回事?它们有何区别与联系?答:“轴对称”是指两个图形之间的形状与位置关系;“轴对称图形”是指一个图形的位置与形状关系。一个图形可分割成两个图形,当这两个图形关于某直线对称时原来的那个图形就是轴对称图形;反过来,如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。2、一个轴对称图形的对称轴是否只有一条?答:不一定只有一条。有的轴对称图形的对称轴不一定只有一条。通常画出所有的对称轴,这样有利于多角度、灵活地研究几何

2、图形。学习目标弄清几种简单的轴对称图形;从轴对称图形的学习中,逐步学会用对称的思想探究几何图形。继续用翻折与叠合的方法找寻对称轴,并由此看出几种简单的轴对称图形的性质;做一做p1921、线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?2、按照下面的步骤做一做:(1)在一张有完整边疆的长方形纸片上画一条线段AB,AB对折AB使点A,B重合,折痕与AB的交点为O;O(2)在折痕上任取一点C,C沿CA将纸折叠;(3)把纸展开,BCAO得到折痕CA和CB。1)CO与AB有怎样的位置关系?2)AO与BO相等吗?CA与CB呢?能说明

3、你的理由吗?在折痕上另取一点,再试一试。1、线段是轴对称图形。AB试验后的小结AB它的一条对称轴就是对折后能使之完全重合的那条折痕;2、线段的对称轴过线段AB的点,中O3、线段的对称轴与线段AB。(位置关系)垂直线段的对称轴经过线段的中点且垂直于这条线段。4、线段的对称轴上的任意一点CC到线段AB的两端点A、B的距离。相等线段的对称轴上任意一点到这条线段的两端点的距离相等。你能给线段的对称轴另一个名称吗?AB线段的对称轴是这条线段的中垂线。O垂直平分线中垂线也叫。【线段的垂直平分线】垂直且平分线段的一条直线线段的垂直平分线【垂

4、直平分线的性质】线段垂直平分线上的点到这条线段两个端点的距离相等。(1)在一张纸上任意画一个角∠AOB,AOB沿角的两边剪下将这个角对折,使角的两边重合。OA做一做p191(2)在折痕(即角平分线)上任意取一点C;(3)过点C折OA边的垂线,得到新的折痕CD,其中点D是折痕与OA的交点,即垂足。(4)将纸打开,BBBBBCABABABABCDABABABABBACB新的折痕与OB的交点为E。BBBCE想一想AOBOABBBBBCABABABABCDABABABABBAC(1)角是轴对称图形吗?角是轴对称图形,如果是,请找出它的

5、对称轴;角的对称轴是角的平分线所在的直线。角平分线的性质BABBD(2)在上述的操作过程中,你发现了哪些线段相等?说说你的理由。CE=CD角的平分线上的点到这个角的两边的距离相等。BCE在折痕上另取一点,再试一试。随堂练习随练习堂1、如图,在Rt△ABC中,做完本题后,你对角平分线(垂直平分线)又增加了什么认识?思考角平分线与垂直平分线的性质,为我们证明两线段相等又提供了新的方法与途径。ABCBD是∠B的平分线,DE⊥AB,垂足为E,EDE与DC相等吗?D答:DE=BC。∵DC⊥BC,垂足为E,∵DE⊥BA,垂足为E,BD是∠

6、ABC的平分线(D在∠ABC的平分线上)∴DE=BC。为什么?接拓展练习小结角的平分线的性质——线段与角是轴对称图形;线段的垂直平分线的性质——本节课你学到了什么?线段的对称轴是线段的垂直平分线;角的对称轴是角的平分线所在的直线;线段垂直平分线上的点到这条线段两个端点的距离相等。角的平分线上的点到这个角的两边的距离相等。角平分线与线段的垂直平分线的性质,为我们证明两线段相等又提供了新的方法与途径。尺规作线段的中垂线拓展练习观察领悟作法,探索思考证明方法:ABCD拓展练习观察领悟作法,探索思考证明方法:ABCCEFG拓展练习如图

7、,在△ABC中,∠C等于900,AB的中垂线DE交BC于D,交AB于E,连接AD,若AD平分∠BAC,找出图中相等的线段,并说说你的理由。ACBDE你能找到图中特殊的三角形吗?你能找到图中相等的角吗?解:∵AB的中垂线DE交BC于D,交AB于E,∴EB=EA,DB=DA;∵AD平分∠BAC,DC⊥AC、DE⊥AB,∴DC=DE。Rt△AcD、Rt△AED、Rt△ACB、Rt△BED、等腰△DBA。EDBCA解:∵DE是线段BC的垂直平分线,∴EC=EB∴△BCE的周长=EB+EC+BC=6+6+10=22。△ABC中,BC=1

8、0,边BC的垂直平分线分别交AB、BC于点E、D,BE=6,求△BCE的周长.拓展练习6ED=6BE=6某一个星期六,某中学初一年级的同学参加义务劳动,其中有四个班的同学分别在M、N两处参加劳动,另外四个班的同学分别在道路AB、AC两处劳动,现要在道路AB、AC的交叉区域内设

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。