欢迎来到天天文库
浏览记录
ID:48633978
大小:910.39 KB
页数:10页
时间:2020-01-24
《选用适当方法解二元一次方程组.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、用适当的方法解二元一次方程组衡阳县实验学校朱丽丽教学目标:会用适当的方法解二元一次方程组.过程与方法:在自主探索和合作交流中,进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.教学重点:用适当的方法解二元一次方程组.教学难点:在解题过程中进一步体会“消元”思想,会对一些特殊的方程组进行特殊的解法。温故知新1、解二元一次方程组的基本思想是。2、解二元一次方程组的两种基本方法是。消元代入消元法和加减消元法解下列方程组,并指出哪种方法更简单。2x+3y=5y=3①3x-2y=4X+2y=4
2、②③3x+y=5-5x+3y=1代入法加减法代入法或加减法小试牛刀注意:对于较复杂的二元一次方程组,应先化简。总结归纳1、解二元一次方程组的两种方法的使用并没有严格的规定。2、使用代入消元法的原则是:选择未知数的系数是的方程。3、使用加减消元法的原则是:①方程组中有一个未知数的系数;②同一个未知数的系数成关系;③求同一字母系数的。1或-1相等或互为相反数倍数最小公倍数乘胜追击选择你认为适当方法解方程组(口答):解方程组:0.03+=0.05……①+=……②花样百出解:原方程组化简得:3+=5……③-5+=-3……④把?
3、=1代入③得:∴方程组的解为?=1?=2在代入法和加减法的基础上,还有其他方法哟!③-④得:8新授:整体代入法(换元法)两个方程中有相同整式时,可用整体代入法(换元法)例:解方程组(2?−3?)−5(2?+3?)=2①(2?−3?)+4(2?+3?)=11②解得=2=─1解:①─②得─9(2?+3?)=─92?+3?=1③把③代入①得(2?−3?)─5x1=22?−3?=7④联立③④得2?+3?=1③2?−3?=7④先观察再动手=3=-1练习:1、解方程组2、拓展:注意两个方程的系数!!!总结:解二元一次方程组没有固定
4、模式,采用什么方法主要取决于未知数的系数和个人习惯。目标都是化繁为简,化二元为一元。
此文档下载收益归作者所有