【教学设计】《单位圆与任意角的正弦函数、余弦函数的定义》(北师大)

【教学设计】《单位圆与任意角的正弦函数、余弦函数的定义》(北师大)

ID:47366026

大小:24.00 KB

页数:4页

时间:2019-07-30

【教学设计】《单位圆与任意角的正弦函数、余弦函数的定义》(北师大)_第1页
【教学设计】《单位圆与任意角的正弦函数、余弦函数的定义》(北师大)_第2页
【教学设计】《单位圆与任意角的正弦函数、余弦函数的定义》(北师大)_第3页
【教学设计】《单位圆与任意角的正弦函数、余弦函数的定义》(北师大)_第4页
资源描述:

《【教学设计】《单位圆与任意角的正弦函数、余弦函数的定义》(北师大)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、◆教材分析《单位圆与任意角的正弦函数、余弦函数的定义》在初中,学生已经学过锐角三角函数,知道直角三角形中锐角的三角函数等于相应边长的比值。在此基础上,随着本章将角的概念推广,以及引入弧度制以后,这里相应也要将锐角三角函数推广为任意角三角函数。这一节课中,教科书安排了2个例题,例题1是已知角终边上的一点的坐标,求角的三角函数值;例题2是根据定义求一个角的三角函数值,目的是为了巩固任意角三角函数的定义。◆教学目标【知识与能力目标】1、掌握任意角的三角函数的定义;2、已知角α终边上一点,会求角α的各三角函数值;3、记住三角函数的定义域、值域。【过程与方法目标】1、理解并掌握任意角的三角函数的定

2、义;2、树立映射观点,正确理解三角函数是以实数为自变量的函数;3、通过对定义域,三角函数值的符号的确定,提高学生分析、探究、解决问题的能力。【情感态度价值观目标】1、使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;◆教学重难点2、学习转化的思想,培养学生严谨治学、一丝不苟的科学精神。【教学重点】任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号)。【教学难点】利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来。◆课前准备◆电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调

3、试好。◆教学过程一、复习导入部分初中锐角的三角函数是如何定义的?角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。二、讲解新课:1、三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么:(1)比值叫做α的正弦,记作,即;(2)比值叫做α的余弦,记作,即;(3)比值叫做α的正切,记作,即;(4)比值叫做α的余切,记作,即;说明:①α的始边与轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,四个比值不以点在α的终边上的位置的改变

4、而改变大小;③当时,α的终边在轴上,终边上任意一点的横坐标都等于,所以无意义;同理当时,无意义;④除以上两种情况外,对于确定的值α,比值、、、分别是一个确定的实数,正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。2、三角函数的定义域、值域函数定义域值域注意:(1)在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的非负半轴重合。(2)α是任意角,射线OP是角α的终边,α的各三角函数值(或是否有意义)与ox转了几圈,按什么方向旋转到OP的位置无关。(3)sin是个整体符号,不能认为是“sin”与“α”的积.其余五个符号也是这样。(4)任意角

5、的三角函数的定义与锐角三角函数的定义的联系与区别:锐角三角函数是任意角三角函数的一种特例,它们的基础共建立于相似(直角)三角形的性质,“r”同为正值。所不同的是,锐角三角函数是以边的比来定义的,任意角的三角函数是以坐标与距离、坐标与坐标、距离与坐标的比来定义的,它也适合锐角三角函数的定义。实质上,由锐角三角函数的定义到任意角的三角函数的定义是由特殊到一般的认识和研究过程。(5)为了便于记忆,我们可以利用两种三角函数定义的一致性,将直角三角形置于平面直角坐标系的第一象限,使一锐角顶点与原点重合,一直角边与x轴的非负半轴重合,利用我们熟悉的锐角三角函数类比记忆。3、例题分析例1、求下列各角

6、的四个三角函数值:(通过本例总结特殊角的三角函数值)(1);(2);(3)例2、已知角α的终边经过点,求α的四个函数值。例3、已知角α的终边过点,求α的四个三角函数值。4、三角函数的符号:练习:确定下列三角函数值的符号:(1);(2);(3);(4)例4、求证:若且,则角是第三象限角,反之也成立。四、小结:本节课学习了以下内容:1、任意角的三角函数的定义;2、三角函数的定义域、值域;3、三角函数的符号。五、作业:1、教材P15面练习;2、作业P20面习题1.2A组第1、2、3(1)(2)(3)题及P21面第9题的(1)、(3)题。◆教学反思◆略

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。