资源描述:
《【高三数学】抽象函数周期性的探究(共9页)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、抽象函数周期性的探究厦门六中黄东梅抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运川的能力•而在教学中我发现同学们对于抽彖函数周期性的判定和运川比较因难,所以特探究一下抽彖函数的周期性问题.利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题•以卞给出儿个命题:命题1:若a是非零常数,对于函数y二f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1)函数y=f
2、(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期.(2)函数y=f(x)满足f(x+a)=—,则f(x)是周期函数,且2a是它的一个周期./(x)(3)函数y=f(x)满足f(x+a)+f(x)=l,则f(x)是周期函数,且2a是它的一个周期.命题2:若a、b(°Hb)是非零常数,对于函数y二f(x)定义域的一切x,满足下列条件之一,则函数y二f(x)是周期函数.(1)函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且
3、a-b
4、是它的一个周期.(2)函数图象关于两条直线x二a,x二b对称,则函数y=f(x)是周期函数
5、,且2
6、a-b
7、是它的一个周期.(3)函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,fL2
8、a-b
9、是它的一个周期.(4)函数图象关于直线xp,及点M(b,0)对称,则函数y=f(x)是周期函数,且4
10、a-b
11、是它的一个周期.命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件Z_,则函数y二f(x)是周期函数.(1)若f(x)是定义在R上的偶函数,其图象关于点线xp)(寸称,则f(x)是周期函数,且2a是它的一个周期.(2)若f(x)是定义在R上的奇函数,其图象关于直线xp对称,则f(x)是周期函数,且血是它的一个
12、周期.我们也对以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基木类似.设条件A:定义在R上的函数f(x)是一个偶函数.条件B:f(x)关于x二a对称条件C:f(x)是周期函数,是其一个周期.结论:已知其中的任两个条件可推出剩余一个.证明:①己知A、B-C(2001年全国高考第22题第二问)・・・f(x)是R上的偶函数・・・f(-x)=f(x)又*/f(x)关于x=a对称f(x)=f(x+2a)/.f(x)=f(x+2a)/.f(x)是周期函数,且2a是它的一个周期②己知A、C—B
13、・・・定义在R上的函数f(x)是一个偶甫数・・・f(-x)=f(x)又':2a是f(x)一个周期f(x)=f(x+2a)f(~x)=f(x+2a)/.f(x)关于x=a对称③已知C、B-A•/f(x)关于x=a对称f(-x)=f(x+2a)又・・・2a是f(x)—个周期・•・f(x)=f(x+2a)・・・f(-x)二f(x)・・・f(x)是R上的偶函数T由命题3(2),我们还可以得到结论:f(x)是周期为T的奇函数,则f(-)=02基于上述命题阐述,可以发现,抽彖函数具有某些关系•根据上述命题,我们易得函数周期,从而解决问题,以下探究上述命题在解决抽象函数问题中的运用
14、.1.求函数值例1:f(x)是R上的奇函数f(x)=-f(x+4),xG[O,2]时f(x)=x,求f(2007)的值解:方法一Vf(x)=—f(x+4)Af(x+8)=—f(x+4)=f(x)・・・8是f(x)的一个周期Af(2007)=f(251X8-l)=f(-l)=-f(l)=-l方法二・・・f(x)二一f(x+4),f(x)是奇函数f(_x)=f(x+4)f(x)关于x=2对称乂•/f(x)是奇函数・・・8是f(x)的一个周期,以下与方法一相同.例2:已知f(x)是定义在R上的函数,且满足f(x+2)[l-f(x)]=l+f(x),f(l)=2,求f(200
15、9)的值解:由条件知fgl,故〃+2)=册・・・/(兀+4)=1+/(兀+2)二__1l-/(x+2)~/(x)类比命题1可知,函数f(x)的周期为8,故f(2009)=f(251X8+1)二f(1)=22.求函数解析式例3:已知f(x)是定义在R上的偶函数,f(x)=f(4-x),且当xe[-2,0]时,f(x)二一2x+l,则当xe[4,6]时求f(x)的解析式解:当兀w[0,2]时一兀w
16、-2,0
17、・・・f(―x)二2x+l、:f(X)是偶函数・・.f(—x)=f(x)f(x)=2x4-1当兀w[4,6]吋-4+xg[0,2]・・・f(—4+x