欢迎来到天天文库
浏览记录
ID:43561257
大小:1.80 MB
页数:18页
时间:2019-10-10
《四川省雅安市2018-2019学年高二下学期期末考试数学(理)试题 含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、四川省雅安市2018-2019学年高二下学期期末检测试题数学(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知是虚数单位,若复数满足,则的虚部为()A.-1B.C.1D.-3【答案】D【解析】分析】利用复数代数形式的乘除运算可得z=1﹣3i,从而可得答案.【详解】,∴复数z的虚部是-3故选:D【点睛】本题考查复数代数形式的乘除运算,属于基础题.2.的展开式中,的系数是()A.30B.40C.-10D.-20【答案】B【解析】【分析】通过对括号展开,
2、找到含有的项即可得到的系数.【详解】的展开式中含有的项为:,故选B.【点睛】本题主要考查二项式定理系数的计算,难度不大.3.若直线和椭圆恒有公共点,则实数的取值范围是()A.B.C.D.【答案】B【解析】【分析】根据椭圆1(b>0)得出≠3,运用直线恒过(0,2),得出1,即可求解答案.【详解】椭圆1(b>0)得出≠3,∵若直线∴直线恒过(0,2),∴1,解得,故实数的取值范围是故选:B【点睛】本题考查了椭圆的几何性质,直线与椭圆的位置关系,属于中档题.4.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.
3、那么采用5局3胜制还是7局4胜制对乙更有利?()A.5局3胜制B.7局4胜制C.都一样D.说不清楚【答案】A【解析】【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案.【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:,显然采用5局3胜制对乙更有利,故选A.【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.5.正方体中,直线与平面所成角正弦值为
4、()A.B.C.D.【答案】C【解析】【分析】作出相关图形,设正方体边长为1,求出与平面所成角正弦值即为答案.【详解】如图所示,正方体中,直线与平行,则直线与平面所成角正弦值即为与平面所成角正弦值.因为为等边三角形,则在平面即为的中心,则为与平面所成角.可设正方体边长为1,显然,因此,则,故答案选C.【点睛】本题主要考查线面所成角的正弦值,意在考查学生的转化能力,计算能力和空间想象能力.6.已知,则等于()A.-4B.-2C.1D.2【答案】D【解析】【分析】首先对f(x)求导,将1代入,求出f′(1)的值,化简f′(x),最后将x=
5、3代入即可.【详解】因f′(x)=2x+2f′(1),令x=1,可得f′(1)=2+2f′(1),∴f′(1)=﹣2,∴f′(x)=2x+2f′(1)=2x﹣4,当x=3,f′(3)=2.故选:D【点睛】本题考查导数的运用,求出f′(1)是关键,是基础题.7.“”是“函数在区间单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】分析:求出导函数,若函数在单调递增,可得在区间上恒成立.解出,故选A即可.详解:,∵若函数函数在单调递增,∴在区间上恒成立.∴,而在区间上单调递减,∴.即“
6、”是“函数在单调递增”的充分不必要条件.故选A..点睛:本题考查充分不必要条件的判定,考查利用导数研究函数的单调性、恒成立问题的等价转化方法,属中档题.8.某次运动会中,主委会将甲、乙、丙、丁四名志愿者安排到三个不同比赛项目中担任服务工作,每个项目至少1人,若甲、乙两人不能到同一个项目,则不同的安排方式有()A.24种B.30种C.36种D.72种【答案】B【解析】【分析】首先对甲、乙、丙、丁进行分组,减去甲、乙两人在同一个项目一种情况,然后进行3个地方的全排列即可得到答案.【详解】先将甲、乙、丙、丁分成三组(每组至少一人)人数分配是
7、1,1,2共有种情况,又甲、乙两人不能到同一个项目,故只有5种分组情况,然后分配到三个不同地方,所以不同的安排方式有种,故答案选B.【点睛】本题主要考查排列组合的相关计算,意在考查学生的分析能力,逻辑推理能力和计算能力,难度不大.9.若曲线在处的切线,也是的切线,则()A.B.1C.2D.【答案】C【解析】【分析】求出的导数,得切线的斜率,可得切线方程,再设与曲线相切的切点为(m,n),得的导数,由导数的几何意义求出切线的斜率,解方程可得m,n,进而得到b的值.【详解】函数的导数为y=ex,曲线在x=0处的切线斜率为k==1,则曲线在
8、x=0处的切线方程为y﹣1=x;函数的导数为y=,设切点为(m,n),则=1,解得m=1,n=2,即有2=ln1+b,解得b=2.故选:A.【点睛】本题主要考查导数的几何意义,求切线方程,属于基础题.10.设分别是定义在
此文档下载收益归作者所有