欢迎来到天天文库
浏览记录
ID:40707213
大小:4.90 MB
页数:9页
时间:2019-08-06
《Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、AdversarialExamplesDetectioninDeepNetworkswithConvolutionalFilterStatisticsXinLi,FuxinLiSchoolofElectricalEngineeringandComputerScienceOregonStateUniversityurumican@gmail.com,lif@eecs.oregonstate.eduAbstractDeeplearninghasgreatlyimprovedvisualrecognitioninrecen
2、tyears.However,recentresearchhasshownthatthereexistmanyadversarialexamplesthatcannegativelyimpacttheperformanceofsuchanarchitecture.Thispaperfocusesondetectingthoseadversarialexamplesbyanalyz-ingwhethertheycomefromthesamedistributionasthenormalexamples.Insteado
3、fdirectlytrainingadeepneuralFigure1.Anoptimizationalgorithmcanfindtheadversarialex-networktodetectadversarials,amuchsimplerapproachisamplewhere,withalmostnegligibleperturbationstohumaneyes,proposedbasedonstatisticsonoutputsfromconvolutionalwillcompletelydistortt
4、hepredictionresultofadeepneuralnet-layers.Acascadeclassifierisdesignedtoefficientlydetectwork[26].Thisalgorithmisquiteuniversal,havingbeensuccess-adversarials.Furthermore,trainedfromoneparticularad-fullytestedonmanydifferentnetworksandtheusercandirecttheversarial
5、generatingmechanism,theresultingclassifiercannetworktooutputanycategorywithadversarialoptimization.successfullydetectadversarialsfromacompletelydifferentmechanismaswell.Afterdetectingadversarialexamples,andotherdevastatingeffectswouldbeunavoidable.weshowthatmany
6、ofthemcanberecoveredbysimplyper-formingasmallaveragefilterontheimage.Thosefind-Therefore,thereareamplereasonstobelievethatitisingsshouldprovokeustothinkmoreabouttheclassificationimportanttoidentifywhetheranexamplecomesfromanor-mechanismsindeepconvolutionalneuralne
7、tworks.maloranadversarialdistribution.Suchknowledgeifavail-ablewillhelpsignificantlytocontrolbehaviorsofrobotsemployingdeeplearning.Areliableprocedurecanpreventrobotsfrombehavinginundesirablemannersundesirable1.Introductionbecauseofthefalseperceptionsitmadeabout
8、theenviron-Recentadvancesindeeplearninghavegreatlyimprovedment.arXiv:1612.07767v1[cs.CV]22Dec2016thecapabilitytorecognizeimagesautomatically[13,24,8].Theunderstandingofwheth
此文档下载收益归作者所有