欢迎来到天天文库
浏览记录
ID:39786730
大小:55.50 KB
页数:5页
时间:2019-07-11
《数学北师大版七年级下册3 探索三角形全等的条件 第1课时 边边边》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、3探索三角形全等的条件第1课时边边边教学目标【知识与技能】了解三角形的稳定性,三角形全等“边边边”的条件,经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.【过程与方法】使学生在自主探索三角形全等的过程中,经历画图、观察、比较、交流等过程,从而获得正确的学习方式和良好的情感体验.【情感态度】培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验.【教学重点】三角形“边边边”的全等条件.【教学难点】用三角形“边边边”的条件进行有条理的思考并进行简单的推理.教学过程一、情景导入,初步认知1.出示幻灯片,两个全等的三角形,让学生找出其中相等的边和角,复习全等三角形所
2、具有的性质.2.要画一个三角形与小明画的三角形全等需要什么条件?一定要知道所有的边长和所有的角度吗?条件能否尽可能的少?是需要一个条件?两个条件?三个条件?还是更多的条件?【教学说明】通过复习,使学生回忆起所学的和三角形全等相关的一些性质和概念.并通过问题的提出引导学生思考,鼓励学生通过画图、观察、比较、推理、交流等方式,在条件由少到多的过程中逐步探索出最后的结论.二、思考探究,获取新知做一做:1.只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.(1)三角形的一个内
3、角为30°,一条边为3cm;(2)三角形的两个内角分别为30°和50°;(3)三角形的两条边分别为4cm,6cm.【归纳结论】只给出一个或两个条件时,都不能保证所画的三角形一定全等.议一议:如果给出三个条件画三角形,你能说出有哪几种可能的情况?做一做:1.已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?2.已知一个三角形的三条边分别为4cm,3cm和4.5cm,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?【教学说明】以问题串的形式引导学生逐步深入的思考可以使三角形全等的条件,问题的提
4、出从条件的由少到多,由简到繁,一步步深入、引导,通过一系列的活动最终得出正确的结论.【归纳结论】三边分别对应相等的两个三角形全等.简写为“边边边”或“SSS”.探究:取三根长度适当的木条,用钉子钉成一个三角形的框架,你所得到的框架的形状固定吗?用四根木条钉成的框架的形状固定吗?【归纳结论】三角形具有稳定性,四边形不具有稳定性.【教学说明】让学生感受实例,直观、生动、便于理解.在此基础上,向学生提出:(1)你能举出一些生活中应用三角形的稳定性的例子吗?(2)图(2)的形状是可以改变的,它不具有稳定性.,你如何才能使图(2)的框架不能活动,也具有稳定性?从理论上升到实践,将知识延伸开去,应用到生
5、活实践,才能真正作到学有所用.三、运用新知,深化理解1、已知:如图.AB=DC,AC=DB求证:∠A=∠DABDC2.已知:如图,在四边形ABCD中,AB=CB,AD=CD.∠C与∠A相等吗?为什么?解:∠C=∠A.理由:如图,连接BD.在△ABD和△CBD中,∵AB=CB,AD=CD,BD=BD,∴△ABD≌△CBD(SSS).∴∠C=∠A.【教学说明】巩固练习,对课上的探索结论有更深一步的认识.3、已知:如图.点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF求证:∠A=∠DABDECF4、已知:如图.AB=DC,AC=DB,OA=OD求证:∠A=∠DABDCOo5.如图
6、,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.分析:根据条件OA=OC,EA=EC,OA、EA和OC、EC恰好分别是△EAC和△EBC的两条边,故可以构造两个三角形,利用全等三角形解决解:如图,连结OE,在△EAO和△ECO中,OA=OC(已知),EA=EC(已知),OE=OE(公共边).∴△EAO≌△ECO(SSS),∴∠A=∠C(全等三角形的对应角相等).6.如图,AD=BC,AB=DC.∠A与∠D有什么样的数量关系?解:∠A+∠D=180°.理由:如图,连结AC,∵AD=BC,AB=DC,AC=CA,∴△ABC≌△CDA(SSS)
7、,∴∠BAC=∠DCA,∴AB∥CD,∴∠A+∠D=180°(两直线平行,同旁内角互补).四、师生互动,课堂小结1.通过本节课的学习,你学会什么知识?2.通过本节课的学习,你有什么体验?3.通过本节课的学习,你掌握了什么方法?课后作业1.完成同步练习册中本课时的练习.
此文档下载收益归作者所有